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Abstract

While architecture is recognized as key to the performance of deep neural networks, its pre-
cise effect on training dynamics has been unclear due to the confounding influence of data
and loss functions. This paper proposed an analytic framework based on the geometric
control theory to characterize the dynamical properties intrinsic to a model’s parameter-
ization. We prove that the Structural Invariant Manifolds (SIMs) of an analytic model
F (θ)(x)—submanifolds that confine gradient flow trajectories independent of data and
loss—are unions of orbits of the vector field family {∇θF (·)(x) | x ∈ Rd}. We then prove
that a model’s symmetry, e.g., permutation symmetry for neural networks, induces SIMs.
Applying this, we characterize the hierarchy of symmetry-induced SIMs in fully-connected
networks, where dynamics exhibit neuron condensation and equivalence to reduced-width
networks. For two-layer networks, we prove all SIMs are symmetry-induced, closing the
gap between known symmetries and all possible invariants. Overall, by establishing the
framework for analyzing SIMs induced by architecture, our work paves the way for a deeper
analysis of neural network training dynamics and generalization in the near future.

Keywords: neural network architecture; training dynamics; geometric control theory;
structural invariant manifold

AMS Subject Classification: 68T07, 34H05, 93C10, 93B03, 93B27

1. Introduction

Neural networks serve as the core engine of modern AI applications. The architecture of a
network—that is, its specific scheme for parameterizing functions—is widely recognized as
the primary factor influencing its training behavior and ultimate generalization performance
on a given task (Krizhevsky et al., 2012; He et al., 2016; Vaswani et al., 2017). Nevertheless,
the nonlinear nature of these architectures gives rise to highly nonlinear training dynamics,
making the analysis of these dynamics and the precise consequences of architectural choices
a persistently challenging problem (E et al., 2006).

In recent years, several theoretical developments in deep learning have shed light on
this problem. One line of research focuses on a key phenomenon in nonlinear training
dynamics known as condensation (Luo et al., 2021; Xu et al., 2025) (also referred to as
quantization (Maennel et al., 2018), weight clustering (Brutzkus and Globerson, 2019), or
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alignment (Min et al., 2024)). This widely observed process describes how neurons within a
layer tend to align with one another during training. The study of condensation illuminates
how neural networks adaptively extract features from data and reveals an implicit bias
towards simpler functions that can be expressed by narrower networks (Xu et al., 2025).
Crucially, condensation results from the nonlinear network architecture and is absent in any
linear models. In addition, a series of works have revealed that the permutation symmetry
of neural network architectures profoundly impacts both training dynamics and the loss
landscape’s critical point distribution (Fukumizu et al., 2019; Liu, 2024; Simsek et al., 2021;
Zhang et al., 2021). Regarding the dynamics, it has been shown that permutation-invariant
subspaces are also invariant under the training dynamics (Simsek et al., 2021; Liu, 2024).
Regarding the loss landscape, the embedding principle demonstrates that a network inherits
all critical points from any narrower network within its architecture (Zhang et al., 2021;
Simsek et al., 2021; Fukumizu et al., 2019). Furthermore, some recent works have leveraged
Lie brackets and the Frobenius theorem to systematically identify conserved quantities and
the lower-dimensional invariant manifolds they induce in nonlinear models like deep linear
and ReLU networks (Marcotte et al., 2023, 2025). These conservation laws, inherent to the
model architecture, constrain the models’ global training dynamics.

Despite these advancements, uncovering the exact impact of a nonlinear architecture on
training dynamics remains challenging, primarily due to the difficulty of isolating its effect
from the complications of the training data and loss function. In this paper, we address this
challenge by introducing the concept of structural invariant manifold (SIM), which is defined
as a submanifold of the parameter space that confines gradient flow trajectories independent
of training data and loss, as the central object for our study. By employing the geometric
control theory, in particular the Hermann–Nagano Theorem (Nagano, 1966), we uncover
the dynamical effect of architecture as follows: Architecture partitions the parameter
space into nonintersecting orbits. These orbits and their unions give rise to all SIMs
of the gradient flow. Note that all models possess a trivial SIM, i.e., the entire parameter
space RM . Our results yield a key insight into the dichotomy between linear and nonlinear
models: a generic linear model possesses only the trivial SIM. Consequently, the existence
of non-trivial SIMs, which often have much lower dimensions than the full parameter space,
is a hallmark of how a nonlinear architecture fundamentally shapes training dynamics.
We remark that our framework, grounded in geometric control theory, offers a unified
mathematical foundation for the analysis of architecture-induced invariant structures. This
approach bridges the gap between the separate treatments of invariant structures resulting
from symmetry or conservation law in the literature (Simsek et al., 2021; Liu, 2024; Marcotte
et al., 2023, 2025).

In general, uncovering the orbits of complex nonlinear models like neural networks is
technically difficult. In this work, we identify a general family of architectural proper-
ties—namely, invariant maps and their induced symmetry groups and infinitesimal sym-
metries—that can conveniently reveal a series of SIMs. By determining all such symmetry
groups and infinitesimal symmetries for general deep neural networks, we uncover a large
family of SIMs with a hierarchical structure: non-trivial SIMs exist with dimensions ranging
from low to high, where each lower-dimensional SIM exhibits neuron condensation and is
functionally equivalent to a reduced-width network. While obtaining all SIMs for neural
networks remains a general challenge, we take a step forward by proving that, for generic
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two-layer networks, all SIMs are indeed symmetry-induced. The properties and analytical
techniques we develop for studying these SIMs are broadly applicable and extend to other
nonlinear models, such as matrix factorization (Bai et al., 2024; Koren et al., 2009), and
to other architectures, including Convolutional Neural Networks (Krizhevsky et al., 2012;
Zhang et al., 2025a) and Transformers (Vaswani et al., 2017; Chen and Luo, 2025).

Overall, this paper establishes an analytic framework for identifying SIMs induced by
model architecture, thereby elucidating how specific architectural designs inherently con-
strain gradient flow training dynamics globally. It is important to note, however, that the
realized training dynamics and ultimate generalization performance are also profoundly in-
fluenced by other factors, including the target function, training data, initialization, and
loss function. An important and promising direction for future research is to study how
these elements interact with these architecture-induced geometric structures to determine
the actual trajectory of training and generalization performance.

The logical organization of our main results is illustrated in the flowchart in Figure 1.
In this diagram, red blocks highlight the main theorems of each section. We now pro-
ceed to introduce each main section. Section 2 introduces the preliminaries including the
Hermann–Nagano Theorem (Theorem 2.1, Corollary 2.1) in geometric control theory. Sec-
tion 3 then defines Structural Invariant Manifolds (SIMs), proving they are orbit unions of
F =

{
∇θF (·)(x) | x ∈ Rd

}
(Theorem 3.1). This implies structural invariant sets are closed

under set operations (Proposition 3.2) and that linear models possess only trivial SIMs
(Proposition 3.3). Section 4 connects symmetry of model architecture to its SIMs, proving
that SIMs can be induced by invariant maps (Theorem 4.1). Results on the orthogonal
symmetry group (Lemma 4.1) and infinitesimal symmetry (Proposition 4.1) then lead to a
characterization of symmetry-induced SIMs in deep neural networks (Theorem 4.2). Sec-
tion 5 analyzes two-layer neural networks. By applying neuron independence (Lemma 5.1)
and a perturbation lemma (Lemma 5.2), we establish properties for the rank of the Lie clo-
sure (Corollary 5.1–5.3). These results, combined with connectivity (Corollary 5.4, based
on Proposition 5.1 and 5.2), allow us to prove a main find: for generic two-layer networks,
all SIMs are symmetry-induced (Theorem 5.1). Section 6 provides a conclusion of our pa-
per. In Appendix A, we provide the definitions and concepts from geometric control theory
pertinent to the content of this paper.

2. Preliminary

2.1 Problem setting

We define a parametric model as a map F : RM → C(Rd,R), where M and d are positive
integers, and C(Rd,R) denotes the set of continuous functions from Rd to R. Given a
parameter θ ∈ RM , the output function F (θ) is a function from Rd to R. The value of this
function for an input x ∈ Rd is denoted by F (θ)(x). Given a parametric model F , a dataset
S = {(xi, yi)}ni=1 and an analytic loss function ℓ : R× R → R, we can define the empirical
loss function as L(θ) =

∑n
i=1 ℓ(F (θ)(xi), yi). We analyze in this work the gradient flow

given by dθ
dt = −∇θL(θ). By chain rule, we have

dθ

dt
= −∇θL(θ) = −

n∑
i=1

∇ℓ(F (θ)(xi), yi)∇θF (θ)(xi). (1)
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SIMs of  are orbit unions of 
(Thm. 3.1)

invariant maps induce SIM
(Thm. 4.1)

SIMs are all symmetry-induced
for generic two-layer neural networks

(Thm. 5.1) 

rank of Lie closure
(Cor. 5.2, 5.3)

Hermann–Nagano Theorem
(Thm. 2.1, Cor. 2.1, Jurdjevic, 1997)

Section 3 Structural invariant manifold (SIM) 

Section 5 Orbit of Two-layer Neural Networks 

orthogonal symmetry group
induce an invariant partition

(Lem. 4.1)

neuron independence
(Lem. 5.1, Zhang et.al. , 2022)

perturbation lemma
(Lem. 5.2)

connectivity of 
invariant foliation

(Cor. 5.4)

closed under set operations
(Prop. 3.2)

linear model has only trivial SIM
(Prop. 3.3)

symmetry-induced SIMs 
of deep neural networks

(Thm. 4.2) 

infinitesimal symmetry 
of deep neural network

(Prop. 4.1)

Section 4 Symmetry and Symmetry-Induced SIM 

rank of Lie closure at 
non-degenerate 

(Cor. 5.1)

symmetry-induced invariant foliation 
of two-layer neural networks

(Prop. 5.1, 5.2)

 Lem. 3.1, Lee, 2012

Figure 1: Flowchart of the paper’s logical structure, illustrating the progression from Sec-
tion 3, Section 4, to Section 5. Grey blocks represent foundational results from
prior work. Red blocks denote the paper’s main theorems. Green blocks rep-
resent propositions, blue blocks represent lemmas, and yellow blocks represent
corollaries.
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Throughout the paper, ∇ℓ denotes the gradient of ℓ with respect to its first variable. The
function L(θ) depends on the dataset S and the loss function ℓ, but we omit these de-
pendencies from the notation for simplicity. All regularity assumptions in this paper are
analytic. For example, we only consider analytic parametric model defined in Definition 2.1.

Definition 2.1 (analytic parametric model). A parametric model F (θ)(x), where θ ∈
RM and x ∈ Rd, is called an analytic parametric model if F , considered as a function
of θ and x, is a real-valued analytic function.

A major objective of this paper is to discuss invariant manifolds of Eq. (1) that are
independent of loss function ℓ and dataset S. The definition of an invariant manifold is
provided in Definition 2.2.

Definition 2.2 (vector field induced invariant set (manifold)1). Suppose M is a
positive integer and M is a subset of RM . Let X be an analytic vector field on RM , and let
θ(t) denote the solution to the Cauchy problem θ̇ = X(θ),θ(0) = θ0. We say that M is an
invariant set (with respect to the vector field X) if for every θ0 ∈ M, the solution θ(t)
remains in M for all t in its maximal interval of existence. We also say M is invariant
under X. Moreover, if M is an immersed submanifold of RM , we say M is an invariant
manifold.

In this paper, the primary parametric models we consider are the neural networks defined
in Definitions 2.3 and 2.4.

Definition 2.3 (multi-layer fully-connected neural network). Consider the neural
network F (θ)(x) defined inductively by

a(0) = x, a(l) = σ
(
W (l)a(l−1) + b(l)

)
, l = 1, 2, . . . , L,

where F (θ)(x) = a(L) and the parameters are θ =
(
W (l), b(l)

)L
l=1

. Here, each W (l) is an

nl × nl−1 matrix, and b(l), a(l) are vectors in Rnl . The activation function σ : R → R
is assumed to be real-analytic and acts entrywise on vectors. Technically when writing

θ =
(
W (l), b(l)

)L
l=1

the matrix W (l) should be flattened to a vector, but we omit it for
simplicity. In this paper we consider scalar output, i.e. nL = 1.

Definition 2.4 (two-layer neural network). The network is represented as F (θ)(x) =∑m
i=1 aiσ(w⊺

i x), where x ∈ Rd, ai ∈ R,wi ∈ Rd, θ = (ai,wi)
m
i=1 ∈ R(d+1)m, and m is the

width of the network. The function σ : R → R is the activation function, which is assumed
to be a non-polynomial, real analytic function.

Numerous symmetries exist in neural networks. We will introduce the concept here and
discuss it in detail in Section 4.

Definition 2.5 (symmetry group). Let F be an analytic parametric model, and let G
be a group (or semigroup) acting on the parameter space of F . If the action of any element
g ∈ G leaves the output of F invariant for all inputs, i.e., F (g(θ))(x) = F (θ)(x),∀g ∈
G, ∀θ ∈ RM , ∀x ∈ Rd, then G, together with its action, is called a symmetry group (or
semigroup) of F . Furthermore, if every action of G is an orthogonal linear transformation,
then G is called an orthogonal symmetry group.

1. Please see Appendix A for the definition of analytic vector field.
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2.2 Orbit

To analyze the dynamics of θ(t), we now introduce concepts from geometric control theory.
A detailed introduction of geometric control theory is provided in Appendix A.

Definition 2.6 (orbit, page 33 of Jurdjevic (1997)). 2 Let F be a family of analytic
vector fields on an analytic manifold M. Let G = G(F) be the group (pseudogroup)
of diffeomorphisms (local diffeomorphisms) generated by {etX | t ∈ R, X ∈ F} under
composition. For any θ ∈ M, we define the orbit of F through θ as {g(θ) | g ∈ G}, which
we denote by OF (θ).

Given a family of analytic vector fields, each of its orbits forms an analytic immersed
submanifold. The dimension of an orbit is determined by the Lie closure of the vector field
family, as stated in Definition 2.7 and Theorem 2.1.

In Jurdjevic (1997), Theorem 2.1 is stated under an analytic regularity assumption,
whereas Corollary 2.1 is presented as a theorem under smooth regularity. Given that this
paper operates within analytic regularity, we introduce an analytic version of Corollary 2.1.
This version is a direct consequence of Theorem 2.1, and we therefore designate it as a
corollary.

Definition 2.7 (Lie closure). Let M be an analytic manifold and F be a family of
analytic vector fields on M. We use Lie(F) to denote the Lie algebra of analytic vector
fields generated by F . For any point θ ∈ M, Lieθ(F) is defined to be the set of all tangent
vectors V (θ) with V in Lie(F). We call Lieθ(F) the Lie closure of F at θ.

Theorem 2.1. (Hermann–Nagano Theorem, Theorem 6 in Section 2 of Jurdjevic (1997))
Let M be an analytic manifold, and F a family of analytic vector fields on M. Then:

(i) Each orbit of F is an (immersed) analytic submanifold of M.

(ii) If N is an orbit of F , then the tangent space of N at θ is given by Lieθ(F). In
particular, the dimension of Lieθ(F) is constant as θ varies over N .

Corollary 2.1. (Theorem 3 in Section 2 of Jurdjevic (1997)) Let M be an analytic manifold
and F be a family of analytic vector fields on M. Suppose that F is such that Lieθ0(F) =
Tθ0M for some θ0 in M. Then the orbit of F through θ0 is open. If, in addition, Lieθ(F) =
TθM for each θ in M, and if M is connected, then there is only one orbit of F equal to
M.

3. Structural Invariant Manifold (SIM) and its framework

3.1 SIM as a key tool for the recovery puzzle

Considering the simplest setup where a parametric model F (θ)(x) is used to recover a
target function f∗ ∈ {F (θ)(·) | θ ∈ RM} from n training samples {(xi, f

∗(xi))}ni=1. The
gradient flow training dynamics is written as

dθ

dt
= −∇θL(θ) = −

n∑
i=1

∇ℓ(F (θ)(xi), f
∗(xi))∇θF (θ)(xi). (2)

2. Please see Appendix A for the definition of etX , analytic manifold, analytic vector field and pseudogroup.
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A fundamental question in machine learning, known as the recovery problem, is to identify
the conditions that allow above dynamics to successfully find the target function f∗. If
F (θ)(x) is a linear model in θ with linearly independent basis and a proper loss ℓ(·, ·),
then it is well-known that f∗ can be recovered generically from n ≥ M samples (Zhang
et al., 2025a). However, when we change F (θ)(x) to a nonlinear model, our understanding
becomes extremely limited.

A particularly mysterious phenomenon is that nonlinear models like neural networks
can recover certain targets even under severe overparameterization n ≪ M (Zhao et al.,
2024; Zhang et al., 2025a,b, 2023). This phenomenon sparks the following recovery puzzle:

How neural networks recover targets under overparameterization?
Note that this puzzle is a specialization of the widely acknowledged generalization puzzle in
deep learning theory—why overparameterized neural networks often generalize well (Breiman,
2018; Zhang et al., 2017). Yet, we argue that the recovery puzzle well serves as the cor-
nerstone of the generalization puzzle: (i) the notion of recovery resolves the ambiguity in
the notion of “generalize well”; (ii) understanding the conditions for recovery is often the
first and the key step towards understanding generalization as in the cases of linear re-
gression, signal processing (Shannon, 1948; Luke, 1999) (e.g., Nyquist-Shannon sampling
theorem (Shannon, 1948)), and compressed sensing (Candès et al., 2006; Donoho, 2006;
Candès and Wakin, 2008).

In recent years, progress has been made by solving some weaker versions of the recovery
puzzle. Zhang et al. (2025a) proves a recovery guarantee for neural networks under over-
parameterization in the sense of local linear recovery, i.e., recovering targets in the tangent
space of some optimal point in the target set F−1(f∗). Zhang et al. (2023) makes a step
further to prove a recovery guarantee in the sense of local recovery, i.e., recovering targets
in the neighbourhood of the target set F−1(f∗). Despite the progress, how one can leverage
these local recovery guarantees to a global one remains an extremely difficult problem. Par-
ticularly, we lack means to globally back-trace the gradient flow dynamics from the vicinity
of the target set to see if there exists a generic initialization that reliably access F−1(f∗)
for n < M training samples.

Motivated by recent results that demonstrate existence of lower dimensional (< M)
invariant subspaces independent to training data and loss induced by the permutation
symmetry of neural networks architecture (Simsek et al., 2021; Liu, 2024), we realize that
these architecture-induced invariant manifolds could serve as the key tool for the global
tracing of gradient flow dynamics. For the convenience of study, we first provide a formal
definition as follows.

Definition 3.1 (structural invariant manifold (SIM)). Let F (θ)(x),θ ∈ RM ,x ∈ Rd
be an analytic parametric model. For a subset M ⊂ RM , we say M is a structural
invariant set if it is invariant under −∇θL(θ) in Eq. (1) for any real analytic loss function
ℓ : R× R → R and dataset S. Moreover, if M is an immersed submanifold of RM , we say
M is a structural invariant manifold.3

The concept of SIM is introduced to capture the intrinsic dynamical consequence of a
model’s architecture, independent of any particular dataset or loss function. Example 3.1

3. By convention, the empty set is neither a structural invariant set nor a structural invariant manifold.
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illustrates a nontrivial SIM that arises in a simple nonlinear model. As we will show in the
next section, this manifold emerges as a consequence of the model’s permutation symmetry.

Example 3.1 (SIMs of two-neuron exponential neural network). Consider a two-
neuron neural network with exponential activation and a one-dimensional input x. The
model is given by:

F (θ)(x) = a1e
w1x + a2e

w2x,

where θ = (a1, w1, a2, w2) ∈ R4, x ∈ R. It is easy to verify that M = {(a1, w1, a2, w2) ∈
R4 | a1 = a2, w1 = w2} is a SIM. Later in Theorem 5.1 we will see that all SIMs of F are
R4, M and R4 \M.

The justification for the utility of lower dimensional SIMs in global trajectory tracing is
as follows:
(i) Enabling recovery under overparameterization: a d < M dimensional SIM enables
us to study the gradient flow on this confined lower dimensional manifold. If the target set
F−1(f∗) intersecting with certain d < M dimensional SIM, then target recovery by intuition
is possible with d ≤ n < M training samples.
(ii) Enabling strong complexity control: a d < M dimensional SIM makes it possible
for the model to keep the complexity (marked by the effective degrees of freedom) ≤ d for
an arbitrarily long time: (1) on the SIM the complexity is constrained for infinite time; (2)
the closer some θ(t) is to the SIM, the longer afterwards the output complexity is upper
bounded approximately by d.

SIMs emerge directly from a model’s architecture, providing the key utilities for ana-
lyzing global dynamics described above. Therefore, this work makes an effort to establish
a theoretical foundation—using geometric control theory—for the systematic identification
of all SIMs in analytic parametric models with a focus on the neural network architecture.

3.2 SIMs as orbit unions of F

A central challenge in the study of SIMs for Eq. (1) lies in isolating the influence of model
architecture from the confounding effects of training data and loss function. In this work, we
propose a relaxation of the dynamics that resembles a geometric control problem, revealing
a connection between the SIMs of the model F and the orbits of the induced vector fields
F , defined as follows.

Definition 3.2 (induced vector fields). Let F (θ)(x) be an analytic parametric model
with θ ∈ RM and x ∈ Rd. Define the family of vector fields

F =
{
∇θF (·)(x) | x ∈ Rd

}
.

F is called the induced vector fields of the model.

Our relaxation of the dynamics in Eq. (1) proceeds as follows. For each parameter
vector θ ∈ RM , we observe that the gradient −∇θL(θ) lies within the span of the model’s
gradients, i.e.,

−∇θL(θ) ∈ span ({∇θF (θ)(xi)}ni=1) ⊆ span
(
{∇θF (θ)(x) | x ∈ Rd}

)
.

8



This observation implies that the gradient flow trajectories are encapsulated in the orbits
of {∇θF (·)(xi)}ni=1, hence in the orbits of F , which is determined solely by the model
architecture.

With a detailed theoretical derivation below, we arrive at the first key result of our
work in Theorem 3.1, which ensures that the orbits of F and their unions give rise to all
SIMs. This theorem serves as the foundation for all our later analysis as it translates the
seemingly complicated task of identifying all SIMs into a clean one: computing the orbits of
F . Building on this result, we can further explore several key questions: What SIMs arise
under different neural network architectures? How do these manifolds emerge?

The proof of Theorem 3.1 relies on Lemma 3.1 as an auxiliary result. We therefore begin
by stating and proving Lemma 3.1, and then proceed to the proof of Theorem 3.1.

Lemma 3.1 (Problem 9-2 of Lee (2012)). Let X be a smooth vector field on RM , and
consider the Cauchy problem

dθ

dt
= X(θ), θ(0) = θ0, (3)

with solution denoted by θ(t). Suppose M ⊂ RM is an immersed submanifold such that
X(θ) ∈ TθM for all θ ∈ M. Then for any initial condition θ0 ∈ M, there exists δ > 0 such
that θ(t) ∈ M for all |t| < δ. Moreover, if M is closed in RM , then θ(t) ∈ M for all t in
the maximal interval of existence.

Proof. We provide its proof for completeness. We prove local invariance first, then extend
to global invariance under the closedness assumption.
Local invariance. Let θ0 ∈ M, and let θ(t) be the solution to Eq. (3). Pick any t0 ∈ R such
that θ(t0) ∈ M. Since M is an immersed submanifold, there exists a local parameterization
ψ : U ⊂ Rk → RM such that ψ(U) ⊂ M, θ(t0) ∈ ψ(U), and Dψ(u) has full column rank
for all u ∈ U . Let u0 := ψ−1(θ(t0)) ∈ U , and consider the ODE in Rk:

du

dt
= (Dψ⊺Dψ)−1Dψ⊺X(ψ(u(t))), u(t0) = u0.

This defines a smooth vector field in Rk, hence admits a unique solution u(t) near t0. Define
θ̃(t) := ψ(u(t)). By the chain rule,

dθ̃

dt
= Dψ(u(t)) · du

dt
= Dψ(Dψ⊺Dψ)−1Dψ⊺X(ψ(u(t))).

Since X(ψ(u(t))) ∈ Tψ(u(t))M, X(ψ(u(t)) is in the image of Dψ. Thus, dθ̃
dt = X(θ̃(t)).

Therefore, θ̃(t) satisfies the same ODE as θ(t) and coincides with it at t = t0. By uniqueness,
θ(t) = θ̃(t) ∈ M near t0. Taking t0 = 0, we obtain δ > 0 such that θ(t) ∈ M for all |t| < δ.
Global invariance (if M is closed). Pick arbitrary T in the maximal interval of existence.
Without loss of generality we assume T > 0. Define A = {t ∈ [0, T ] | θ(t) ∈ M}. By the
local invariance, A is open in [0, T ]. Since θ(t) is continuous and M is closed, A is also
closed in [0, T ]. Since 0 ∈ A, A = [0, T ] by connectedness. Therefore θ(T ) ∈ M. Since T
was arbitrary within the maximal interval of existence, it follows that θ(t) ∈ M for all t in
the maximal interval of existence.
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Theorem 3.1 (SIMs of F are orbit unions of F). Let F (θ)(x),θ ∈ RM ,x ∈ Rd be
an analytic parametric model. Let F =

{
∇θF (·)(x) | x ∈ Rd

}
. Let M ̸= ∅ be a subset (or

immersed submanifold) of RM . Then M is a structural invariant set (or SIM) if and only
if M is invariant under every vector field in F , equivalently, M is union of orbits of F .

Proof. Let M ⊆ RM . Consider the following statements: (i) M is a structural invariant
set. (ii) M is invariant under every vector field in F . (iii) M is a union of orbits of F .
We will show that statements (i)(ii)(iii) are equivalent.

(i) =⇒ (ii): Assume M is invariant under the gradient flow −∇θL(θ) for any real analytic
loss function and dataset. Let x ∈ Rd be arbitrary. Consider the loss function ℓ(s, t) =
−s and the dataset S = {(x, y)} for some y ∈ R. Then L(θ) = −F (θ)(x), and hence
−∇θL(θ) = ∇θF (θ)(x). So ∇θL(·) is a vector field in F . Since x ∈ Rd is arbitrary, M is
invariant under every vector field in F .

(ii) =⇒ (iii): Assume that M ⊂ RM is invariant under every vector field in F . Since this
invariance is preserved under the composition of flows, it follows that M is also invariant
under every (local) diffeomorphism in the (pseudo) group generated by F . Consequently,
OF (θ) ⊂ M for any θ ∈ M. Also, M ̸= ∅. Therefore M is a union of orbits of F .

(iii) =⇒ (i): We begin by presenting a lemma along with its proof.

Lemma 3.2. Let F be an arbitrary family of analytic vector fields on RM . Assume X(θ)
is an analytic vector field that satisfies the condition X(θ) ∈ Lieθ(F), ∀θ ∈ RM . Then each
orbit of F is invariant under X(θ).

Proof for Lemma 3.2: Let M be an orbit of F . Fix any θ0 ∈ M, and let θ(t), t ∈ I be
the solution to the Cauchy problem dθ

dt = X(θ),θ(0) = θ0, where I is the maximal interval
of existence. We now prove that θ(t) ∈ M,∀t ∈ I. Suppose for contradiction that {t ∈
[0,+∞) ∩ I | θ(t) /∈ M} ̸= ∅. Let t1 = inf{t ∈ [0,+∞) ∩ I | θ(t) /∈ M}. By Theorem 2.1,
M is an immersed submanifold, and its tangent space is given by TθM = Lieθ(F). Since
X(θ) ∈ Lieθ(F) for any θ ∈ RM , we have X(θ) ∈ TθM, ∀θ ∈ M. By Lemma 3.1, there
exists δ > 0 such that θ(t) ∈ M for all t ∈ [0, δ), which implies t1 > 0.

Applying Lemma 3.1 again at θ(t1), we obtain a δ1 ∈ (0, t1) such that θ(t) ∈ OF (θ(t1)), ∀t ∈
[t1 − δ1, t1 + δ1]. Since θ(t1 − δ1) ∈ M ∩ OF (θ(t1)), M = OF (θ(t1)). Therefore for all
0 < t ≤ t1 + δ1, θ(t) ∈ M, which contradicts that t1 is the infimum. Hence, the set
{t ∈ [0,+∞)∩I | θ(t) /∈ M} is empty. Similarly, we have {t ∈ (−∞, 0]∩I | θ(t) /∈ M} = ∅.
So θ(t) ∈ M for all t ∈ I. Therefore M is invariant under X(θ). □

We now return to the proof of (iii) =⇒ (i). Assume that M is a union of orbits of
F =

{
∇θF (·)(x) | x ∈ Rd

}
. Consider an arbitrary dataset S and loss function ℓ. For any

θ ∈ RM , the vector −∇θL(θ) in Eq. (1) is a linear combination of vectors in F|θ, where
F|θ is the evaluation of F at θ. Thus, for any θ ∈ RM , we have −∇θL(θ) ∈ span(F|θ) ⊂
Lieθ(F). By Lemma 3.2, each orbit of F is invariant under the vector field −∇θL(·). Hence,
each orbit of F is a SIM. Since M is a union of orbits of F , it follows readily from the
definition that M is a SIM.

Thus the three statements are equivalent. Furthermore, if M is assumed to be an
immersed submanifold of RM , statement (i) may be replaced by the assertion that M is a
SIM.
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In defining SIM, we require it to be invariant to the gradient flow under any loss function
ℓ and dataset S. However, Proposition 3.1 shows that, under mild assumptions on the loss
function ℓ0, an immersed submanifold is a SIM if and only if it is invariant to the gradient
flow under this loss function ℓ0 and any dataset S. Intuitively, data-independent invariance
is strong enough to induce structural invariance.

Proposition 3.1. Let F (θ)(x) be an analytic parametric model with θ ∈ RM , and let M
be an immersed submanifold of RM . Suppose the loss function ℓ0(s, t) is real analytic and
satisfies: ∀s ∈ R,∃t ∈ R such that ∇ℓ0(s, t) ̸= 0. Then M is a SIM if and only if M is
invariant under −∇θL(θ) in Eq. (1) for this loss function ℓ0 and any dataset S.

Proof. By definition of SIM, one direction is trivial. To prove the other direction, assume
that M is invariant under −∇θL(θ) in Eq. (1) for any dataset S and the loss function ℓ0.

Let x0 ∈ Rd be arbitrary, and let S0 = {(x0, y)} for some y ∈ R. Denote X(θ) =
∇θF (θ)(x0). Then under the dataset S0 and the loss function ℓ0, we have −∇θL(θ) =
−∇l0(F (θ)(x0), y)X(θ). By our initial assumption, M is invariant under −∇l0(F (θ)(x0), y)X(θ)
for any y ∈ R. Define F ′ = {−∇l0(F (θ)(x0), y)X(θ) | y ∈ R}. Since M is invariant under
any vector field in F ′, it follows that M is invariant under compositions of flows generated
by vector fields in F ′. So OF ′(θ) ⊂ M, ∀θ ∈ M. Now, fix any θ0 ∈ M. Then OF ′(θ0) ⊂ M.
Let θ(t), t ∈ I denote the solution of the Cauchy problem dθ

dt = X(θ),θ(0) = θ0, where
I is the maximal interval of existence. We now prove that θ(t) ∈ M,∀t ∈ I. Since
OF ′(θ0) ⊂ M, it is sufficient to prove that θ(t) ∈ OF ′(θ0), ∀t ∈ I. By assumption of
ℓ0, for any θ ∈ RM , there exists y0 ∈ R such that ∇ℓ(F (θ)(x0), y0)) ̸= 0. Therefore,
for any θ ∈ RM , we have X(θ) ∈ F ′|θ ⊂ Lieθ(F ′). Applying Lemma 3.2, it follows that
OF ′(θ0) is invariant under X(θ). So θ(t) ∈ OF ′(θ0) ⊂ M, ∀t ∈ I. Thus, M is invariant
under X(θ). Since our choice of x0 is arbitrary, M is invariant under any vector field in
F =

{
∇θF (·)(x) | x ∈ Rd

}
. It follows from Theorem 3.1 that M is a SIM.

Structural invariant sets are closed under set operations, as shown in Proposition 3.2.

Proposition 3.2 (structural invariant sets are closed under set operations). Let
F (θ)(x) be an analytic parametric model with parameter θ ∈ RM , and let E denote the
collection of all structural invariant sets of the model F , augmented by the empty set. Then
the following properties hold:

(i) If M ∈ E , then its complement RM \M ∈ E .

(ii) If {Mi}i∈I ⊆ E is any collection of structural invariant sets indexed by I, then both
the intersection

⋂
i∈I MI and the union

⋃
i∈I Mi belong to E .

Proof. By definition, RM =
⋃
j∈J Oj , where J is an index set, Oj , j ∈ J are all orbits of

F = {∇θF (·)(x) | x ∈ Rd}. Besides, Os ∩ Ot = ∅ if s, t ∈ J and s ̸= t. By Theorem 3.1,
elements of E is of the form M =

⋃
j∈J ′ Oj , where J ′ ⊂ J is an arbitrary index set (J ′ may

be empty).
(i) Complement: Let M =

⋃
j∈J ′ Oj be an arbitrary structural invariant set, where

J ′ ⊂ J is an index set. Then RM \M =
⋃
j∈J\J ′ Oj . Therefore RM \M ∈ E .

(ii) Union and Intersection: Let Mi =
⋃
j∈Ji Oj be arbitrary structural invariant sets for

i ∈ I, where I is an arbitrary index set, and Ji ⊂ J for all i ∈ I. Then it is straightforward
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to verify
⋃
i∈I Mi =

⋃
j∈∪i∈IJi

Oj , and
⋂
i∈I Mi =

⋃
j∈∩i∈IJi

Oj . Therefore both
⋃
i∈I Mi

and
⋂
i∈I Mi are in E .

As demonstrated in Proposition 3.3, linear models possess only trivial SIM RM , high-
lighting that the presence of nontrivial SIMs is a distinctive characteristic of nonlinear
systems.

Proposition 3.3 (linear model has only trivial SIM). Let {ψ1(x), . . . , ψM (x)} be
a set of linearly independent analytic functions defined on Rd. Consider the linear model
F (θ)(x) =

∑M
i=1 θiψi(x), where θ = (θ1, . . . , θM ) ∈ RM ,x ∈ Rd. Then F has only the

trivial SIM, RM .

Proof. By Theorem 3.1, a SIM is a union of orbits of the family F = {(ψ1(x), . . . , ψM (x)) |
x ∈ Rd}. Therefore, it suffices to show that F has a single orbit equal to RM .

Fix any θ0 ∈ RM . Let F|θ0 denote the evaluation of F at some θ0. Suppose, for contra-
diction that span(F|θ0) ⊊ RM . Then there exists a nonzero vector c = (c1, . . . , cM ) ∈ RM
such that c is orthogonal to span(F|θ0), i.e.,

∑M
i=1 ciψi(x) = 0,∀x ∈ Rd. This contradicts

the assumption that {ψ1(x), . . . , ψM (x)} is a linearly independent set of functions. There-
fore, span(F|θ) = RM for all θ ∈ RM . Since span(F|θ) ⊂ Lieθ(F) ⊂ RM , it follows that
Lieθ(F) = RM for all θ ∈ RM . By Corollary 2.1, this implies that F has a single orbit
equal to RM .

4. Symmetry and Symmetry-Induced SIM

Based on Theorem 3.1, the problem of identifying all SIMs of an analytic parametric model
F reduces to computing all orbits of F . This task is particularly challenging, especially for
deep neural networks (DNNs) with three or more layers. In the following, we prove a very
general and useful mechanism for SIM generation, i.e., the invariant map, which induces a
large subset of all SIMs.

4.1 Symmetry-induced SIM

We begin by examining how invariant maps give rise to SIMs. In Definition 4.1, we formally
define two types of invariant maps: infinitesimal invariant maps and global invariant maps,
which we collectively refer to as invariant maps. It is worth noting that every global
invariant map is also an infinitesimal invariant map, but not vice versa.

The notion of infinitesimal invariant maps is introduced for the following reasons. First,
the symmetries that give rise to SIMs often do not require global invariance; instead, it
is sufficient for the invariance to hold in a local neighborhood of the manifold, or even
merely at the level of tangent. This motivates the generalization from global to infinitesimal
invariance. Second, in the context of neural networks, one encounters invariant maps that
are globally defined but possess only tangent invariance (Proposition 4.1). Such maps are
still capable of inducing SIMs despite exhibiting only this weaker form of invariance.

Definition 4.1 (infinitesimal and global invariant map). Let F (θ)(x) be an analytic
parametric model with θ ∈ RM and x ∈ Rd. For an analytic map g : RM → RM , we say
g is an infinitesimal invariant map if M := {θ′ | g(θ′) = θ′} ̸= ∅, and for any θ ∈ M,
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any x ∈ Rd, Dθ (F (g(θ))(x)) = Dθ (F (θ)(x)). Here Dθ denotes the Jacobian matrix.
Moreover, if F (g(θ))(x) = F (θ)(x),∀θ ∈ RM ,x ∈ Rd, we say g is a global invariant
map.

Theorem 4.1 provides a set of general conditions under which the fixed-point set of invari-
ant maps forms a SIM. In contrast, Example 4.1 shows that invariant maps—even globally
invariant ones—do not necessarily induce SIMs without the other conditions. Theorem 4.1
subsumes prior results such as the O-mirror symmetry in Liu (2024) and the symmetric
loss in Simsek et al. (2021), up to a subtle distinction: those works consider symmetries of
the empirical loss function L(θ), whereas we focus on symmetries of the parametric model.
Ignoring this difference, our result can be viewed as a generalization of these earlier cases.
Moreover, Theorem 4.1 applies not only to linear but also to nonlinear invariant maps, as
illustrated in Example 4.2.

In addition to the symmetries considered in Theorem 4.1, continuous symmetries, as
discussed in Liu et al. (2024), represent another class capable of inducing SIMs. These
continuous symmetries typically manifest in homogeneous networks and matrix factorization
models. However, the scope of this paper is intentionally focused on the discrete symmetries
detailed in Theorem 4.1 as they are generally shared by all neural networks.

Theorem 4.1 (invariant maps induced SIM). Let F (θ)(x) be an analytic parametric
model with θ ∈ RM and x ∈ Rd. Let {gi}i∈I be family of invariant maps of F . Define
M = {θ | gi(θ) = θ,∀i ∈ I}. Assume M is an immersed submanifold of RM with its
tangent space satisfying TθM =

⋂
i∈I ker(Dg⊺i (θ) − idM ), ∀θ ∈ M. Then M is a SIM.4

Proof. By Theorem 3.1, it suffices to prove that for any x0 ∈ Rd,θ0 ∈ M, the solution θ(t)
to the Cauchy problem dθ

dt = ∇θF (θ(t))(x0),θ(0) = θ0 remains in M for all t in its maximal
interval of existence. Fix any x0 ∈ Rd, and define the vector field X(θ) := ∇θF (θ)(x0). To
apply Lemma 3.1, we now show that X(θ) ∈ TθM, ∀θ ∈ M.

Since a global invariant map is always an infinitesimal invariant map, without loss
of generality we assume gi is an infinitesimal invariant map for each i ∈ I. Since gi is
an infinitesimal invariant map, Dgi(θ)⊺∇θF (gi(θ))(x0) = ∇θF (θ)(x0), ∀θ ∈ M. When
θ ∈ M, we have gi(θ) = θ, so the equation becomes Dgi(θ)⊺∇θF (θ)(x0) = ∇θF (θ)(x0),
implying ∇θF (θ)(x0) ∈ ker(Dgi(θ)⊺ − idM ). Since this holds for all i ∈ I, X(θ) ∈⋂
i∈I ker(Dgi(θ)⊺ − idM ). By assumption,

⋂
i∈I ker(Dgi(θ)⊺ − idM ) = TθM. Therefore

X(θ) ∈ TθM, ∀θ ∈ M.

Moreover, each fixed-point set {θ | gi(θ) = θ} is closed (since gi is continuous), so M,
being their intersection, is closed in RM . Since X(θ) ∈ TθM and M is a closed immersed
submanifold, it follows from Lemma 3.1 that θ(t) ∈ M for all t in the maximal interval of
existence. So M is a SIM.

Remark 4.1. The assumption M is an immersed submanifold and TθM =
⋂
i∈I ker(Dg⊺i (θ)−

idM ), ∀θ ∈ M often holds under the following two conditions:
(i) M is an immersed submanifold with TθM =

⋂
i∈I ker(Dgi(θ)− idM ), which is automat-

ically satisfied when all gi are linear maps.

4. Dgi is the jacobian matrix of gi, and Dg⊺i is its transpose. idM is the M ×M identity matrix.
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(ii)
⋂
i∈I ker(Dg⊺i (θ)− idM ) =

⋂
i∈I ker(Dgi(θ)− idM ) for all θ ∈ M, which is automatically

satisfied when Dgi(θ) is a linear normal operator for all i ∈ I,θ ∈ M.

As a direct corollary, the assumption M is an immersed submanifold and TθM =⋂
i∈I ker(Dg⊺i (θ) − idM ), ∀θ ∈ M holds if all gi are linear normal operators. Besides, the

regularity assumptions on F (θ)(x) and gi(θ) can be weakened to C1, and the domain of θ
can be taken to be any open set U ⊂ RM .

Example 4.1 (global invariant map may not induce SIM). Let θ = (θ1, θ2) ∈ R2, and
define F (θ)(x) = (θ1 − θ2)x for all θ ∈ R2, x ∈ R. Consider the map g(θ) = (θ1 + θ2, 2θ2).
Then g is a global invariant map of F . However, the fixed-point set of g, given by M = {θ |
θ2 = 0}, is not a SIM, since it is not invariant under all vector fields in F = {(x,−x) | x ∈ R}.

Example 4.2 (nonlinear symmetry). Let F (θ)(x) = (
√
θ21 + θ22 + 1√

θ21+θ
2
2

+ x)2, where

θ = (θ1, θ2) ∈ R2 \ {0} and x ∈ R. Define the map g : R2 \ {0} → R2 \ {0} by g(θ1, θ2) =
( θ1
θ21+θ

2
2
, θ2
θ21+θ

2
2
). Then g is a global invariant map of F , and its fixed-point set is M =

{(θ1, θ2) ∈ R2 | θ21 + θ22 = 1}. One can verify that the assumptions of Theorem 4.1 are
satisfied. Therefore, M is a SIM.

Invariant maps can form a semigroup under composition. In neural networks, this
semigroup is typically an orthogonal symmetry group, as defined in Definition 2.5. If a
collection of SIMs forms a disjoint partition of the parameter space, we refer to this collection
as an invariant partition. As shown in Lemma 4.1, a finite orthogonal symmetry group
can induce such an invariant partition, where each leaf corresponds to a set of parameters
sharing the same stabilizer subgroup.

In the context of invariant partitions, a natural partial order can be defined based on
partition coarseness: given two partitions P1 and P2 of a set, we say that P1 is finer than
P2 if every block of P1 is contained within some block of P2. Given an analytic model, the
collection of orbits of F naturally forms an invariant partition. By Theorem 3.1, any SIM
is a union of such orbits. It follows that the orbit partition is the finest invariant partition.
Consequently, any invariant partition induced by an orthogonal symmetry group provides
an upper bound for the orbit partition under this ordering.

Lemma 4.1 (invariant partition induced by an orthogonal symmetry group). Let
F (θ)(x) with θ ∈ RM be an analytic model, and let G be an orthogonal symmetry group
of finite elements. For each θ ∈ RM , define its stabilizer subgroup as

S(θ) := {g ∈ G | g(θ) = θ}.

Define an equivalence relation on the parameter space by θ1 ∼ θ2 ⇐⇒ S(θ1) = S(θ2).
Denote by [θ] the equivalence class containing θ. Then the collection {[θ] | θ ∈ RM} is an
invariant foliation.

Proof. For any g ∈ G, its fixed-point set Mg := {θ ∈ RM | g(θ) = θ} is a SIM by
Theorem 4.1 and Remark 4.1. A straightforward verification confirms that the defined
relation satisfies the properties of an equivalence relation. Thus, it suffices to prove that
for any θ ∈ RM , [θ] is a SIM. Fix any θ ∈ RM . By definition, [θ] consists of all parameters
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whose stabilizer is exactly S(θ). This allows [θ] to be expressed in terms of set operations
on the family {Mg | g ∈ G} as follows:

[θ] =

 ⋂
h∈S(θ)

Mh

 ∩

 ⋂
g∈G\S(θ)

(RM \Mg)

 .

Since the family of structural invariant sets is closed under finite intersection and comple-
ment (Proposition 3.2), [θ] is a structural invariant set.

Moreover, since G has finite elements, the set [θ] can be viewed as the linear space⋂
h∈S(θ)Mh with finitely many linear subspaces

(⋂
h∈S(θ)Mh

)
∩ Mg (for g /∈ S(θ)) re-

moved. Consequently, [θ] is relatively open in the linear subspace
⋂
h∈S(θ)Mh, and hence

is an immersed submanifold of RM . Therefore, [θ] is a SIM.

4.2 Symmetries of neural networks

Symmetries are prevalent in deep neural networks, as detailed in Proposition 4.1 and Theo-
rem 4.2 below. These symmetries generally originate from two principal sources. First, the
indistinguishability of neurons within a given layer gives rise to the permutation symme-
try group, denoted Gper (Theorem 4.2). Second, the symmetry of the activation function,
σ(x), constitute another source. Specifically, if σ(x) possesses definite parity (i.e., is an odd
or even function), a reflection symmetry group, Gsign or G′

sign, emerges as an orthogonal
symmetry group (Theorem 4.2). Given that global invariant maps and orthogonal maps are
closed under composition, the permutation and reflection group can generate more complex
orthogonal symmetry groups under composition. Furthermore, local symmetries can also
be identified. If σ(0) = 0 or σ′(0) = 0, the activation function σ(x) exhibits infinitesimal
odd or even behavior in the vicinity of the origin. This local property results in the actions
of elements in Gsign or G′

sign manifesting as infinitesimal symmetry maps (Proposition 4.1).
To present Proposition 4.1 and Theorem 4.2, we first introduce Definition 4.2. The

group Sp2 ⋊Sp in Definition 4.2 is also known as the hyper-octahedral group (Young, 1928).

Definition 4.2. Consider the multi-layer neural network F from Definition 2.3, with layer
widths n0, . . . , nL. For any positive integer p, let Sp2 denote the group of p × p diagonal
sign matrices (entries in {±1}), and let Sp denote the group of p× p permutation matrices.
Define the semidirect product Sp2 ⋊ Sp with the group operation given by

(Λ1,P1)(Λ2,P2) =
(
Λ1P1Λ2P

⊤
1 , P1P2

)
,

where Λ1,Λ2 ∈ Sp2 and P1,P2 ∈ Sp. One can readily verify that this structure satisfies the
axioms of a semidirect product. We define the following groups and describe their action
on the parameter space of F :

(i) Define the group Gper = Sn1 × · · · × SnL−1 , where × denotes the direct sum. For any

(P (1), . . . ,P (L−1)) ∈ Gper, define its action on the parameter space as

(P (1), . . . ,P (L−1)) :
(
W (l), b(l)

)L
l=1

7→
(
P (l)W (l)P (l−1)⊺ ,P (l)b(l)

)L
l=1

,
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with the conventions P (0) = idn0 and P (L) = idnL .

(ii) Define the group Gsign = Sn1
2 × · · · × S

nL−1

2 . For any (Λ(1), . . . ,Λ(L−1)) ∈ Gsign, define
its action on the parameter space as

(Λ(1), . . . ,Λ(L−1)) :
(
W (l), b(l)

)L
l=1

7→
(
Λ(l)W (l)Λ(l−1),Λ(l)b(l)

)L
l=1

,

with the conventions Λ(0) = idn0 and Λ(L) = idnL .

(iii) Define the group G′
sign = Sn1

2 × · · · × SnL
2 . For any (Λ(1), . . . ,Λ(L)) ∈ G′

sign, define its
action on the parameter space as

(Λ(1), . . . ,Λ(L)) :
(
W (l), b(l)

)L
l=1

7→
(
Λ(l)W (l),Λ(l)b(l)

)L
l=1

.

(iv) Define the groupGcombine = (Sn1
2 ⋊Sn1)×· · ·×(S

nL−1

2 ⋊SnL−1). For g = ((Λ(1),P (1)), . . . ,

(Λ(L−1),P (L−1))) ∈ Gcombine, define its action on parameter space as

g :
(
W (l), b(l)

)L
l=1

7→
(
Λ(l)P (l)W (l)P (l−1)⊺Λ(l−1), Λ(l)P (l)b(l)

)L
l=1
,

with the conventions P (0) = Λ(0) = idn0 ,P
(L) = Λ(L) = idnL .

Proposition 4.1 (infinitesimal symmetry of deep neural networks). Consider the
multi-layer neural network from Definition 2.3, with layer widths n0, . . . , nL. Let Gsign and
G′

sign be the groups defined in Definition 4.2. Then the following statements hold:

(i) If σ(0) = 0, then the action of any element in Gsign is an infinitesimal invariant map.

(ii) If σ′(0) = 0, then the action of any element in G′
sign is an infinitesimal invariant map.

Proof. We use backpropagation to derive the gradients. For l = 1, . . . , L, define z(l) =
W (l)a(l−1) + b(l) ∈ Rnl and δ(l) = ∂F

∂z(l) ∈ Rnl . Then δ(L) = ∂F
∂z(L) = σ′(z(L)), and δ(l) =

diag(σ′(z(l)))(W (l+1))⊺δ(l+1) for l = L− 1, . . . , 1. The partial derivatives for W (l) and b(l)

are given by ∂F
∂W (l) = δ(l)(a(l−1))⊺ ∈ Rnl×nl−1 and ∂F

∂b(l)
= δ(l) ∈ Rnl .

(i) Assume σ(0) = 0. Let Λ = (Λ(1), . . . ,Λ(L−1)) be an arbitrary element in Gsign. Let

M be the set of fixed points of Λ. Since 0 ∈ M, M ̸= ∅. Pick any θ =
(
W (l), b(l)

)L
l=1

∈ M
and any x ∈ Rd. For simplicity, we write F (θ)(x) as F . Since the action of Λ is linear and
orthogonal, by Remark 4.1, to show that Λ is an infinitesimal invariant map, it suffices to
prove ∂F

∂W (l) = Λ(l) ∂F
∂W (l)Λ

(l−1) and ∂F
∂b(l)

= Λ(l) ∂F
∂b(l)

for l = 1, . . . , L.

Since θ ∈ M, Λ(l)W (l)Λ(l−1) = W (l) and Λ(l)b(l) = b(l) for l = 1, . . . , L. For l =

1, . . . , L, define Il = {i ∈ {1, . . . , nl} | Λ
(l)
ii = −1} (note I0 and IL are empty sets as

Λ(0) = I,Λ(L) = I). Since Λ(1)W (1)Λ(0) = W (1), the j-th row W
(1)
j = 0 for all j ∈ I1.

Similarly, b
(1)
j = 0 for all j ∈ I1. Thus z

(1)
j = 0 for all j ∈ I1. Since σ(0) = 0, a

(1)
j = 0 for

all j ∈ I1.

Next, we prove by induction that a
(l)
j = 0 for all l ∈ {1, . . . , L} and j ∈ Il. Assume that

a
(l)
j = 0, ∀j ∈ Il holds for some l ∈ {1, . . . , L − 1}. Since Λ(l+1)W (l+1)Λ(l) = W (l+1), we

know W
(l+1)
ij = 0 if i ∈ Il+1 and j /∈ Il, or if i /∈ Il+1 and j ∈ Il. Since Λ(l+1)b(l+1) = b(l+1),
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we have b
(l+1)
i = 0,∀i ∈ Il+1. Consider z

(l+1)
i =

∑nl
j=1W

(l+1)
ij a

(l)
j + b

(l+1)
i for any i ∈ Il+1.

If j /∈ Il, then W
(l+1)
ij = 0. If j ∈ Il, then a

(l)
j = 0 by the induction hypothesis. In

both cases, W
(l+1)
ij a

(l)
j = 0. As b

(l+1)
i = 0, we have z

(l+1)
i = 0, ∀i ∈ Il+1. Since a(l+1) =

σ(z(l+1)) and σ(0) = 0, a
(l+1)
i = 0, ∀i ∈ Il+1. By mathematical induction, a

(l)
j = 0 for all

l ∈ {1, . . . , L}, j ∈ Il.

Next, we prove by backward induction that δ
(l)
i = 0 for all l ∈ {1, . . . , L}, i ∈ Il. When

l = L, IL = ∅, so the statement holds vacuously. Assume δ
(l)
i = 0, ∀i ∈ Il for some

l ∈ {2, . . . , L}. We have δ
(l−1)
i = σ′(z

(l−1)
i )

∑nl
j=1W

(l)
ji δ

(l)
j . For any i ∈ Il−1, if j ∈ Il, then

δ
(l)
j = 0 by the induction hypothesis. If j /∈ Il, then W

(l)
ji = 0 by the fixed point condition

Λ(l)W (l)Λ(l−1) = W (l), as i ∈ Il−1. Thus, the sum is zero, and δ
(l−1)
i = 0,∀i ∈ Il−1. By

induction, δ
(l)
i = 0,∀l ∈ {1, . . . , L}, i ∈ Il.

For any l = 1, . . . , L, ∂F
∂W (l) = δ(l)(a(l−1))⊺. Since δ

(l)
i = 0, ∀i ∈ Il, the i-th row of

∂F
∂W (l) is zero. Since a

(l−1)
j = 0, ∀j ∈ Il−1, the j-th column is zero. This implies ∂F

∂W (l) =

Λ(l) ∂F
∂W (l)Λ

(l−1). For any l = 1, . . . , L, ∂F
∂b(l)

= δ(l). Since δ
(l)
i = 0,∀i ∈ Il, this implies

∂F
∂b(l)

= Λ(l) ∂F
∂b(l)

. Therefore, Λ is an infinitesimal invariant map.

(ii) Assume σ′(0) = 0. Let Λ = (Λ(1), . . . ,Λ(L)) be an arbitrary element in G′
sign. Let

M be the set of fixed points of Λ. Since 0 ∈ M, M ̸= ∅. Pick any θ =
(
W (l), b(l)

)L
l=1

∈ M.

Similar to (1), to show Λ is an infinitesimal invariant map, we only need to prove ∂F
∂W (l) =

Λ(l) ∂F
∂W (l) and ∂F

∂b(l)
= Λ(l) ∂F

∂b(l)
for l = 1, . . . , L.

For l = 1, . . . , L, define Il = {i ∈ {1, . . . , nl} | Λ(l)
ii = −1}. Since θ ∈ M, Λ(l)W (l) =

W (l) and Λ(l)b(l) = b(l) for l = 1, . . . , L. This implies that for any l = 1, . . . , L and j ∈ Il,

the j-th row W
(l)
j = 0 and b

(l)
j = 0. Thus, z

(l)
j = (W (l)a(l−1))j + b

(l)
j = 0 · a(l−1) + 0 = 0

for all j ∈ Il. For l < L, δ(l) = diag(σ′(z(l)))(W (l+1))⊺δ(l+1). Since z
(l)
j = 0 for j ∈ Il, the

j-th diagonal entry σ′(z
(l)
j ) = σ′(0) = 0, which implies δ

(l)
j = 0. Thus, for all l = 1, . . . , L,

we have δ
(l)
j = 0 for all j ∈ Il. When l = L, since IL = ∅, δ

(l)
j = 0,∀j ∈ Il holds.

Since ∂F
∂W (l) = δ(l)(a(l−1))⊺ and ∂F

∂b(l)
= δ(l), the j-th row of both ∂F

∂W (l) and ∂F
∂b(l)

is

zero for all j ∈ Il. This directly implies ∂F
∂W (l) = Λ(l) ∂F

∂W (l) and ∂F
∂b(l)

= Λ(l) ∂F
∂b(l)

for all
l = 1, . . . , L. Thus, Λ is an infinitesimal invariant map.

Theorem 4.2 (symmetry-induced SIMs of deep neural networks). Consider the
multi-layer neural network from Definition 2.3, with layer widths n0, . . . , nL. Consider the
groups and actions as defined in Definition 4.2. Then the following statements hold:

(i) Gper is an orthogonal symmetry group and thus induces an invariant partition.

(ii) If σ(x) is an odd function, then Gsign is an orthogonal symmetry group. Moreover,
Gsign and Gper generate a new orthogonal symmetry group under map composition,
which equals Gcombine. Therefore, Gcombine induces an invariant partition. 5

5. The case in which σ is even is analogous; we omit it for brevity.
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(iii) Assume σ(0) = 0. Let I0 and IL to be empty sets. For any choice of subsets Il ⊂
{1, . . . , nl} for each l ∈ {1, . . . , L− 1}, define

M =


(
W (l), b(l)

)L
l=1

∣∣∣∣∣∣∣∣
W

(l)
ij = 0, ∀l ∈ {1, . . . , L}, (i, j) ∈ Il × Icl−1 ∪ Icl × Il−1,

b
(l)
i = 0, ∀l ∈ {1, . . . , L}, i ∈ Il,

W
(l)
ij = c

(l)
ij , ∀l ∈ {1, . . . , L}, (i, j) ∈ Il × Il−1.

 ,

where each c
(l)
ij is an arbitrary real number, W

(l)
ij represents the matrix entry of W (l)

at position (i, j), and Icl = {1, . . . , nl} \ Il. Then M is a SIM.

(iv) If σ′(0) = 0, then for each l ∈ {1, . . . , L} and j ∈ {1, . . . , nl}, the set

Ml,j =

{(
W (k), b(k)

)L
k=1

| W (l)
j = 0 and b

(l)
j = 0

}
is a SIM. Here, W

(l)
j denotes the j-th row of W (l).

Proof. (i) Let P = (P (1), . . . ,P (L−1)) and P ′ = (P ′(1), . . . ,P ′(L−1)) be elements of Gper.
Then the composition of their actions is given by

P ′ ◦ P :
(
W (l), b(l)

)L
l=1

7→
(
P ′(l)P (l)W (l)(P ′(l−1)P (l−1))⊺,P ′(l)P (l)b(l)

)L
l=1

,

which is exactly the action of P ′P . Therefore, it is a group action. Recall a(l) = σ(W (l)a(l−1)+
b(l)). We claim that the action of P changes a(l) to P (l)a(l) for l = 0, 1, . . . , L. For l = 0,
a(0) = x. Since P (0) = idn0 , the claim holds when l = 0. Suppose this holds for some
l ∈ {0, 1, . . . , L−1}. Then a(l+1) is changed to σ(P (l+1)W (l+1)P (l)⊺P (l)a(l)+P (l+1)b(l+1)) =
σ(P (l+1)(W (l+1)a(l) + b(l+1))) = P (l+1)σ(W (l+1)a(l) + b(l+1)) = P (l+1)a(l+1). By mathe-
matical induction, the action of P changes a(l) to P (l)a(l). Since P (L) = idnL , the action
of P does not change the output of the model. Moreover, the permutation of coordinates is
linear and does not change the norm of a vector. Therefore Gper is an orthogonal symmetry
group.

(ii) Similar to the proof of (i), one can verify that the any action of element in Gsign is
a linear orthogonal operator that does not change the output of the model. So Gsign is an
orthogonal symmetry group. The check that Gcombine is the group generated by Gsign and
Gper is straightforward, and we omit the details. Because both global invariant maps and
orthogonal maps are closed under composition, Gcombine is also an orthogonal symmetry
group.

(iii) In the proof of the first statement of Proposition 4.1, one sees that the set

M′ =

{(
W (l), b(l)

)L
l=1

∣∣∣∣∣ W
(l)
ij = 0, ∀l ∈ {1, . . . , L}, (i, j) ∈ Il × Icl−1 ∪ Icl × Il−1,

b
(l)
i = 0, ∀l ∈ {1, . . . , L}, i ∈ Il.

}

is the fixed point of Λ = (Λ(1), . . . ,Λ(L−1)), where Λ(l) is the diagonal matrix with entries
equal to −1 for row indices in Il and +1 otherwise. By Proposition 4.1, Λ is an infinitesimal
invariant map. Since Λ is linear and orthogonal, by Theorem 4.1 and Remark 4.1, M′ is a
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SIM. By the proof of the first statement of Proposition 4.1, the i-th row and j-th column

of ∂F
∂W (l) are zero for any i ∈ Il, j ∈ Il−1. Therefore, for any i ∈ Il, j ∈ Il−1, W

(l)
ij remains

constant during training. Therefore M is a SIM.

(iv) Fix any l ∈ {1, . . . , L} and j ∈ {1, . . . , nl}. Define Λ(l) to be the nl × nl di-

agonal matrix such that the diagonal satisfies Λ
(l)
jj = −1 and Λ

(l)
ii = 1, i ̸= j. Define

Λ = (idn1 , . . . , idnl−1
,Λ(l), idnl+1

, . . . , idnL). By Proposition 4.1, Λ is an infinitesimal in-
variant map. It is easy to see that Λ is an orthogonal linear map. By Theorem 4.1 and
Remark 4.1, the fixed point of Λ is a SIM. Since the fixed point of Λ is Ml,j , Ml,j is a SIM.

Remark 4.2. The symmetries in Theorem 4.2 can be extended to other architectures, such
as ResNet, Convolutional Neural Networks, and Transformers.

5. Orbits of Two-layer Neural Networks

This section considers the two-layer neural network from Definition 2.4. The following two
propositions characterize the invariant partitions induced by the permutation symmetry
group Gper and the combined symmetry groups Gcombine in Definition 4.2.

Proposition 5.1 (invariant partition induced by the permutation symmetry
group). Consider the two-layer neural network of width m and the group Gper in Defi-
nition 4.2. By Theorem 4.2, Gper induces an invariant partition. Let Pm denote the set of
all partitions of {1, . . . ,m}. For each partition P = {B1, . . . , Bs} ∈ Pm, define

MP :=

{
(ai,wi)

m
i=1 ∈ R(d+1)m

∣∣∣∣∣ (ai,wi) = (aj ,wj), ∀p ∈ {1, . . . , s}, ∀i, j ∈ Bp

(ai,wi) ̸= (aj ,wj), ∀p, p′ ∈ {1, . . . , s}, p ̸= p′, ∀i ∈ Bp, j ∈ Bp′

}
.

Then the collection {MP | P ∈ Pm} equals the invariant partition induced by Gper.

Proof. For two-layer neural networks of width m, Gper is simply the group of m×m permu-
tation matrices, denoted by Sm . Since it is isomorphic to the symmetric group of degree
m, we sightly abuse the notation by denoting Sm to be the symmetric group of degree m
in the proof. The action of Sm on the parameter space is given by:

π : (ai,wi)
m
i=1 7→ (aπ−1(i),wπ−1(i))

m
i=1, ∀π ∈ Sm.

For any parameter vector θ = (ai,wi)
m
i=1 ∈ R(d+1)m, we define an equivalence relation ∼ on

the set of indices {1, . . . ,m} such that i ∼ j if and only if (ai,wi) = (aj ,wj). This relation
induces a partition of {1, . . . ,m}, which we denote by Pθ = {B1, . . . , Bs}.

Fix any θ = (ai,wi)
m
i=1 ∈ R(d+1)m. Let S(θ) be the stabilizer subgroup of θ in Sm.

An element π ∈ Sm belongs to S(θ) if and only if π(θ) = θ, i.e. (aπ−1(i),wπ−1(i)) =
(ai,wi), ∀i ∈ {1, . . . ,m}. By definition of Pθ, this holds if and only if for each i, the indices
i and π−1(i) belong to the same block in the partition Pθ. This is true if and only if π
permutes the indices within each block Bl for l = 1, . . . , s. Consequently,

S(θ) = S|B1| × S|B2| × · · · × S|Bs|, (4)
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where S|Bl| is the symmetric group on the set Bl. One can readily verify that
(i): If θ ∈ MPθ0

, then Pθ = Pθ0 . Thus, S(θ) = S(θ0).
(ii): If θ /∈ MPθ0

, then Pθ ̸= Pθ0 . Thus, S(θ) ̸= S(θ0).
Then by definition of the equivalence class, we have [θ0] = MPθ0

. Since θ0 is arbitrary,
{MP | P ∈ Pm} is the invariant partition induced by Gper.

Proposition 5.2 (invariant partition induced by the combined symmetry group).
Consider the two-layer neural network of width m with odd activation function. Con-
sider the group Gcombine in Definition 4.2. By Theorem 4.2, Gcombine induces an invari-
ant partition. Let Pm denote the set of all partitions of {1, . . . ,m}. For each partition
P = {B1, . . . , Bs} ∈ Pm (B1 can be empty) and each γ = (γ1, . . . , γm) ∈ {−1, 1}m, define

MP,γ :=

(ai,wi)
m
i=1 ∈ R(d+1)m

∣∣∣∣∣∣∣
(ai,wi) = 0, ∀i ∈ B1,

γi(ai,wi) = γj(aj ,wj), ∀p ∈ {2, . . . , s}, ∀i, j ∈ Bp,

(ai,wi) ̸= ±(aj ,wj), ∀p, p′ ∈ {1, . . . , s}, p ̸= p′, ∀i ∈ Bp, j ∈ Bp′

 .

Then the collection {MP,γ | P ∈ Pm, γ ∈ {−1, 1}m} equals the invariant partition induced
by Gcombine.

Proof. For two-layer neural networks, Gcombine is simply Sm2 ⋊Sm defined in Definition 4.2.
With a slight abuse of notation, Sm and Sm2 are denoted to be the symmetric group of order
m and {−1, 1}m (m products of the group {−1, 1}), respectively. Then an element of G is
a pair (δ, π) where δ = (δ1, . . . , δm) ∈ {−1, 1}m and π ∈ Sm. The action of the pair (δ, π)
is given by:

(δ, π) : (ai,wi)
m
i=1 7→

(
δiaπ−1(i), δiwπ−1(i)

)m
i=1

.

First, we note that for any θ ∈ R(d+1)m, we can find a partition P ∈ Pm and a
sign vector γ ∈ {−1, 1}m such that θ ∈ MP,γ . Thus, the collection of sets {MP,γ}
covers the entire parameter space. Therefore, to prove that this collection is the invariant
partition of Sm2 ⋊ Sm, we only need to show that for any P ∈ Pm,γ ∈ {−1, 1}m, any
θ0 ∈ MP,γ , the identity [θ0] = MP,γ holds. Now fix any P = {B1, . . . , Bs} ∈ Pm, any
γ = (γ1, . . . , γm) ∈ {−1, 1}m, and any θ0 ∈ MP,γ .
Step 1: Prove MP,γ ⊂ [θ0]. Let θ = (ai,wi)

m
i=1 be an arbitrary element in MP,γ . Denote

G = Sm2 ⋊ Sm. An element (δ, π) ∈ G is in S(θ) if and only if (δ, π) · θ = θ, which means:

(ai,wi) = δi(aπ−1(i),wπ−1(i)) for all i ∈ {1, . . . ,m}. (5)

If (δ, π) ∈ S(θ), then (δ, π) must satisfy the following conditions:

(i) From the third condition of MP,γ , we have (ai,wi) ̸= ±(aj ,wj) if i and j are in different
blocks of the partition P. Equation (5) can only hold if for every block Bl ∈ P, the
permutation π maps Bl to itself, i.e., π(Bl) = Bl.

(ii) For any i ∈ B1, we have (ai,wi) = 0. Since π(B1) = B1, π
−1(i) is also in B1, so

(aπ−1(i),wπ−1(i)) = 0. The condition becomes 0 = δi0, which holds for any δi ∈ {−1, 1}.

(iii) For any i ∈ Bl with l ∈ {2, . . . , s}, we have (ai,wi) ̸= 0. From the second condition
of MP,γ , we know that γi(ai,wi) = γj(aj ,wj) for any i, j ∈ Bl. Applying this to the
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pair i, π−1(i) ∈ Bl, we get γi(ai,wi) = γπ−1(i)(aπ−1(i),wπ−1(i)). Substituting this into
the stabilizer condition Eq. (5), we find:

γi(ai,wi) = γπ−1(i)

(
1

δi
(ai,wi)

)
=⇒ δi =

γπ−1(i)

γi
.

Since γk ∈ {−1, 1}, this is equivalent to δi = γiγπ−1(i).

Denote H to be the set of all pairs (δ, π) ∈ G such that:

(i) π(Bl) = Bl for all l ∈ {1, . . . , s}.

(ii) δi ∈ {−1, 1} is arbitrary for i ∈ B1.

(iii) δi = γiγπ−1(i) for all i ∈ Bl where l ∈ {2, . . . , s}.

By previous argument, S(θ) ⊂ H. Conversely, it is easy to verify that Eq. (5) holds
whenever (δ, π) ∈ H. Therefore H ⊂ S(θ). By both inclusions, H = S(θ). Since H
depends only on the partition P and the sign vector γ, all elements of MP,γ have the same
stabilizer subgroup, and thus MP,γ ⊂ [θ0].
Step 2: Prove [θ0] ⊂ MP,γ. Let θ′ = (a′i,w

′
i)
m
i=1 be an arbitrary element in [θ0]. We will

show that θ′ ∈ MP,γ . Since S(θ′) = S(θ0), the following conditions hold:

(i) For any i ∈ B1, the element (δ, id) where δi = −1 and δj = 1 for j ̸= i is in S(θ0).
Since S(θ′) = S(θ0), (δ, id) ∈ S(θ′). Therefore (δ, id) ·θ′ = θ′, which implies (a′i,w

′
i) =

−(a′i,w
′
i), so (a′i,w

′
i) = 0. This holds for all i ∈ B1.

(ii) For any l ∈ {2, . . . , s} and any i, j ∈ Bl, let πij be the transposition of i and j. The
element (δ, πij) with δk = γkγπ−1

ij (k) is in S(θ0). Applying it to θ′ at index i gives

(a′i,w
′
i) = δi(a

′
j ,w

′
j) = (γiγj)(a

′
j ,w

′
j), which implies γi(a

′
i,w

′
i) = γj(a

′
j ,w

′
j).

(iii) If θ′ violated the third condition, i.e., if (a′i,w
′
i) = ±(a′j ,w

′
j) for some i ∈ Bl, j ∈ Bl′

with l ̸= l′, then S(θ′) would contain elements (δ, π) where π(i) = j. Such elements
are not in S(θ0), contradicting S(θ0) = S(θ′).

Thus, θ′ must satisfy all three conditions defining MP,γ . So θ′ ∈ MP,γ . Thus [θ0] ⊂ MP,γ .

As stated in Lemma 4.1, the orthogonal symmetry group induces an invariant partition
that gives an “upper bound” for orbits. This leads to a natural question: Are the two in-
variant partitions equal for two-layer neural networks? Our strategy for addressing
this question proceeds in three steps:

(i) Develop a neuron independence result to calculate the rank of the Lie closure at non-
degenerate θ (Lemma 5.1, Corollary 5.1).

(ii) Establish a perturbation lemma to transform the degenerate cases into non-degenerate
whenever possible (Lemma 5.2). This lemma allows us to calculate the rank of the Lie
closure at all θ (Corollary 5.2, 5.3).

(iii) Analyze the connectivity of the leaves of invariant partitions (Corollary 5.4).

These preparatory results, in conjunction with Theorem 2.1, establish that all SIMs are
symmetry-induced for generic two-layer neural networks (Theorem 5.1).
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5.1 Rank of Lie closure

We begin by presenting a lemma that establishes the foundation for the rank analysis carried
out in this subsection.

Lemma 5.1 (neuron independence (Zhang et al., 2025a)). Let σ : R → R be any
analytic function such that σ(nj)(0) ̸= 0 for an infinite sequence of distinct indices {nj}∞j=1.

Given d ∈ N and m distinct weights w1, . . . ,wm ∈ Rd\{0}, such that wk ̸= ±wj for all
1 ⩽ k < j ⩽ m. Then {σ (w⊺

i x) , σ′ (w⊺
i x)x1, . . . , σ

′ (w⊺
i x)xd}mi=1 is a linearly independent

function set.

The linear independence established in Lemma 5.1 holds only when parameters satisfy
certain conditions (e.g., wi = ±wj ). We formally define parameters that do not meet
these conditions or have some ai = 0 as degenerate in Definition 5.1. The definition of
degeneracy is designed to ensure the Lie closure of F at non-degenerate θ has full rank, as
stated in Corollary 5.1.

Definition 5.1 (degenerate and non-degenerate). Consider the two-layer neural net-
work. For θ = (ai,wi)

m
i=1, if θ satisfies (i): ak ̸= 0,wk ̸= 0 for all k ∈ {1, . . . ,m}, and

(ii): wi ̸= ±wj for any i, j ∈ {1, . . . ,m} and i ̸= j, then θ is said to be non-degenerate.
Otherwise θ is said to be degenerate.

Corollary 5.1. Consider the two-layer neural network, and suppose that θ ∈ RM is non-
degenerate. Then dim(Lieθ(F)) = (d+ 1)m.

Proof. Let θ = (ai,wi)
m
i=1 be non-degenerate. By calculation, we have

∇θF (θ)(x) =
(
σ(w⊺

i x), aiσ
′(w⊺

i x)x1, . . . , aiσ
′(w⊺

i x)xd
)m
i=1

.

To show that dim(Lieθ(F)) = (d + 1)m, we will prove that the set of vectors U :=
{∇θF (θ)(x) | x ∈ Rd} spans the entire parameter space R(d+1)m.

We proceed by contradiction. Assume that span(U) is a proper subspace of R(d+1)m.
Then there must exist a non-zero constant vector c = (c1,v

⊺
1, . . . , cm,v

⊺
m)⊺ ∈ R(d+1)m,

where ci ∈ R and vi = (vi,1, . . . , vi,d) ∈ Rd, that is orthogonal to every vector in U . This
orthogonality condition, c⊺∇θF (θ)(x) = 0 for all x ∈ Rd, expands to:

m∑
i=1

ciσ(w⊺
i x) +

d∑
j=1

(aivi,j)σ
′(w⊺

i x)xj

 = 0.

This equation is a linear combination of the functions in the set {σ (w⊺
i x) , σ′ (w⊺

i x)x1, . . . , σ
′ (w⊺

i x)xd}mi=1
that is identically zero for all x ∈ Rd.

Since θ is non-degenerate, Lemma 5.1 guarantees that this set of functions is linearly
independent. Consequently, all coefficients of the linear combination must be zero. This
implies:

(i) ci = 0 for all i = 1, . . . ,m.

(ii) aivi,j = 0 for all i = 1, . . . ,m and j = 1, . . . , d.
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The non-degeneracy of θ ensures that ai ̸= 0 for all i = 1, . . . ,m. From the second point, we
must have vi,j = 0 for all i = 1, . . . ,m, j = 1, . . . , d, which means vi = 0 for all i = 1, . . . ,m.
This implies that the entire vector c is the zero vector, which contradicts our assumption
that c was non-zero.

Therefore, the initial assumption must be false, and span(U) = R(d+1)m. Since span(U) ⊂
Lieθ(F) ⊂ R(d+1)m, dim(Lieθ(F)) = (d+ 1)m.

Remark 5.1. Theorem 4.2 implies that the degenerate case of θ can give rise to SIMs. For
completeness, we provide its proof here.

(i) For any i, j ∈ {1, . . . ,m}, the set {(ak,wk)
m
k=1 ∈ R(d+1)m | (ai,wi) = (aj ,wj)} is a

SIM.

(ii) If σ(x) is an odd function, then for any i, j ∈ {1, . . . ,m}, the set {(ak,wk)
m
k=1 ∈

R(d+1)m | (ai,wi) = −(aj ,wj)} is a SIM.

(iii) If σ(x) is an even function, then for any i, j ∈ {1, . . . ,m}, the set {(ak,wk)
m
k=1 ∈

R(d+1)m | (ai,wi) = (aj ,−wj)} is a SIM.

(iv) If σ(0) = 0, then for any i ∈ {1, . . . ,m}, the set {(ak,wk)
m
k=1 ∈ R(d+1)m | (ai,wi) = 0}

is a SIM.

(v) If σ′(0) = 0, then for any i ∈ {1, . . . ,m}, the set {(ak,wk)
m
k=1 ∈ R(d+1)m | wi = 0} is a

SIM.

Proof. We prove the five statements item by item. The procedure is the same for each: we
denote the set in question as a manifold M and then verify that it is a SIM. Since each
of these five sets is a linear subspace of R(d+1)m, by Lemma 3.1, we only need to show
that for any parameter θ ∈ M and any input x ∈ Rd, the gradient ∇θF (θ)(x) also lies
in the tangent space of M, which for a linear subspace means ∇θF (θ)(x) ∈ M. For any
θ = (ak,wk)

m
k=1 ∈ M and x ∈ Rd, the i-th component of the gradient (corresponding to

the parameters (ai,wi) of neuron i) is given by:

∇iF (θ)(x) = (σ(w⊺
i x), aiσ

′(w⊺
i x)x⊺).

We now analyze each item:

(i) Define M = {(ak,wk)
m
k=1 | (ai,wi) = (aj ,wj)}. If θ ∈ M, we have (ai,wi) = (aj ,wj).

This directly implies that their corresponding gradient components are equal:

∇iF (θ)(x) = (σ(w⊺
i x), aiσ

′(w⊺
i x)x⊺) = (σ(w⊺

jx), ajσ
′(w⊺

jx)x⊺) = ∇jF (θ)(x).

Thus, ∇θF (θ)(x) ∈ M.

(ii) Assume σ(x) is an odd function, and define M = {(ak,wk)
m
k=1 | (ai,wi) = −(aj ,wj)}.

We use the property that the derivative of an odd function is an even function, i.e.,
σ′(−z) = σ′(z). If θ ∈ M, we have ai = −aj and wi = −wj . The i-th component of
the gradient is:

∇iF (θ)(x) = (σ(w⊺
i x), aiσ

′(w⊺
i x)x⊺)

= (σ(−w⊺
jx),−ajσ′(−w⊺

jx)x⊺)

= (−σ(w⊺
jx),−ajσ′(w⊺

jx)x⊺) (since σ is odd, σ′ is even)

= −(σ(w⊺
jx), ajσ

′(w⊺
jx)x⊺) = −∇jF (θ)(x).
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Thus, ∇θF (θ)(x) ∈ M.

(iii) Assume σ(x) is an even function, and define M = {(ak,wk)
m
k=1 | (ai,wi) = (aj ,−wj)}.

If θ ∈ M, we have ai = aj and wi = −wj . Let ∇kF = (∇akF,∇wk
F ). Then we have:

∇iF (θ)(x) = (σ(w⊺
i x), aiσ

′(w⊺
i x)x⊺)

= (σ(−w⊺
jx), ajσ

′(−w⊺
jx)x⊺)

= (σ(w⊺
jx), aj(−σ′(w⊺

jx))x⊺) (since σ is even, σ′ is odd)

= (∇ajF,−∇wjF ).

Thus, ∇θF (θ)(x) ∈ M.

(iv) Assume σ(0) = 0, and define M = {(ak,wk)
m
k=1 | (ai,wi) = 0}. If θ ∈ M, we have

(ai,wi) = (0,0). The i-th component of the gradient is:

∇iF (θ)(x) = (σ(0⊺x), 0 · σ′(0⊺x)x⊺) = (σ(0),0).

Given the condition σ(0) = 0, this becomes (0,0). Thus, ∇θF (θ)(x) ∈ M.

(v) Assume σ′(0) = 0, and define M = {(ak,wk)
m
k=1 | wi = 0}. If θ ∈ M, we have wi = 0.

We only need to examine the component of the gradient corresponding to wi:

∇wiF (θ)(x) = aiσ
′(w⊺

i x)x⊺ = aiσ
′(0⊺x)x⊺ = aiσ

′(0)x⊺.

Given the condition σ′(0) = 0, the expression becomes ai · 0 ·x⊺ = 0. This satisfies the
condition for the gradient vector to be in M.

To deal with the degenerate case, we introduce Lemma 5.2, which allows us to perturb
those degenerate θ to non-degenerate whenever possible.

Lemma 5.2 (perturbation lemma). Consider the two-layer neural network. For θ∗ =
(a∗i ,w

∗
i )
m
i=1, the following statement holds:

(i) Assume i ∈ {1, . . . ,m} and a∗i = 0. Then

∃δ > 0, Bδ(θ
∗) ∩OF (θ∗) ⊂ {(ai,wi)

m
i=1 | ai = 0} ⇐⇒ w∗

i = 0, σ(0) = 0.

(ii) Assume i ∈ {1, . . . ,m} and w∗
i = 0, a∗i ̸= 0. Then

∃δ > 0, Bδ(θ
∗) ∩OF (θ∗) ⊂ {(ai,wi)

m
i=1 | wi = 0} ⇐⇒ σ′(0) = 0.

(iii) Assume i, j ∈ {1, . . . ,m} and w∗
i = w∗

j ̸= 0. Then

∃δ > 0, Bδ(θ
∗) ∩OF (θ∗) ⊂ {(ai,wi)

m
i=1 | wi = wj} ⇐⇒ a∗i = a∗j .

(iv) Assume i, j ∈ {1, . . . ,m} and w∗
i = −w∗

j ̸= 0. Then

∃δ > 0, Bδ(θ
∗) ∩OF (θ∗) ⊂ {(ai,wi)

m
i=1 | wi = −wj}

⇐⇒ a∗i = −a∗j , σ(x) is odd or a∗i = a∗j , σ(x) is even.
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Here, Bδ(θ
∗) denotes the open δ-ball around θ∗.

Proof. In each case, the goal is to characterize when the intersection Bδ(θ
∗) ∩ OF (θ∗) is

contained within a specific linear subspace M. Since OF (θ∗) is immersed submanifold of
RM , it follows that for all θ ∈ Bδ(θ

∗) ∩OF (θ∗), the tangent space Tθ(Bδ(θ
∗) ∩OF (θ∗)) =

TθOF (θ∗) is contained in TθM = M. By Theorem 2.1, TθOF (θ∗) = Lieθ(F), hence
Lieθ(F) ⊂ M for all θ ∈ Bδ(θ

∗) ∩OF (θ∗). Since ∇θF (θ)(x) ∈ Lieθ(F), ∀θ ∈ RM ,x ∈ Rd,
we have ∇θF (θ)(x) ∈ M, ∀θ ∈ Bδ(θ

∗) ∩ OF (θ∗),x ∈ Rd. Particularly ∇θF (θ∗)(x) ∈
M, ∀x ∈ Rd. We analyze this condition for the four statements to be proved. For simplicity
we use θ to denote (ai,wi)

m
i=1 ∈ R(d+1)m.

(i) =⇒: Assume OF (θ∗) ⊂ {θ | ai = 0}. The condition ∇θF (θ∗)(x) ∈ {θ | ai =
0}, ∀x ∈ Rd indicates that σ(w∗⊺

i x) = 0 for all x ∈ Rd. Since σ is a real, non-polynomial,
analytic function, this can only hold if w∗ = 0 and σ(0) = 0.

⇐=: Assume w∗
i = 0 and σ(0) = 0. By Remark 5.1, when σ(0) = 0, {θ | (ai,wi) = 0}

is a SIM. Therefore OF (θ∗) ⊂ {θ | (ai,wi) = 0} ⊂ {θ | ai = 0}.

(ii) =⇒: Assume OF (θ∗) ⊂ {θ | wi = 0}. This requires ẇi = aiσ
′(w⊺

i x)x to be zero at
θ∗ for all x ∈ Rd. So a∗iσ

′(w∗⊺
i x)x = 0 for all x ∈ Rd. Given w∗

i = 0, the equation becomes
a∗iσ

′(0)x = 0. Since a∗i ̸= 0 and this must hold for all x, it follows that σ′(0) = 0.

⇐=: Assume w∗
i = 0 and σ′(0) = 0. By Remark 5.1, when σ′(0) = 0, {θ | wi = 0} is a

SIM. Therefore OF (θ∗) ⊂ {θ | wi = 0}.

(iii) =⇒ Assume OF (θ∗) ⊂ {θ | wi = wj}. Then ẇi = ẇj at θ∗ for all x ∈ Rd.
This means a∗iσ

′(w∗⊺
i x)x = a∗jσ

′(w∗⊺
j x)x, ∀x ∈ Rd. As w∗

i = w∗
j , this simplifies to (a∗i −

a∗j )σ
′(w∗⊺

i x)x = 0, ∀x ∈ Rd . Since w∗
i ̸= 0 and σ is not a zero function, the function

σ′(w∗⊺
i x)x is not identically zero. Thus, we must have a∗i = a∗j .

⇐=: Assume a∗i = a∗j and w∗
i = w∗

j . By the permutation symmetry introduced in
Remark 5.1, the set {θ | ai = aj ,wi = wj} is a SIM. Therefore OF (θ∗) ⊂ {θ | ai = aj ,wi =
wj} ⊂ {θ | wi = wj}.

(iv) =⇒: Assume OF (θ∗) ⊂ {θ | wi = −wj}. Given w∗
i = −w∗

j , it requires ẇi = −ẇj

at θ∗. This implies a∗iσ
′(w∗⊺

i x)x = −a∗jσ′(w
∗⊺
j x)x = −a∗jσ′(−w∗⊺

i x)x. Since this must hold

for all x ∈ Rd and w∗
i ̸= 0, it follows that a∗iσ

′(t) + a∗jσ
′(−t) = 0 for all t ∈ R. Integrating

with respect to t yields a∗iσ(t) − a∗jσ(−t) = C for some constant C. Replacing t with −t
gives a∗iσ(−t)−a∗jσ(t) = C. Equating the two expressions gives (a∗i +a∗j )(σ(t)−σ(−t)) = 0.

This implies two cases. First, if σ(t) = σ(−t) for all t (i.e., σ is an even function), then
σ′ is odd. The condition a∗iσ

′(t) + a∗jσ
′(−t) = 0 becomes (a∗i − a∗j )σ

′(t) = 0. As σ′ is not
identically zero, we must have a∗i = a∗j .

Second, if σ is not an even function, then we must have a∗i + a∗j = 0. Choose 0 < δ′ < δ
such that for all θ′ = (a′i,w

′
i)
m
i=1 ∈ Bδ′(θ

∗), we have w′
i ̸= 0 and w′

j ̸= 0. For any
θ′ ∈ Bδ′(θ

∗)∩OF (θ∗), there exists δ′′ such that Bδ′′(θ
′) ⊂ Bδ(θ

∗). Thus, Bδ′′(θ
′)∩OF (θ′) ⊂

Bδ(θ
∗) ∩ OF (θ′) = Bδ(θ

∗) ∩ OF (θ∗) ⊂ {θ | wi = −wj}. Since σ is not an even function,
the same derivation implies a′i + a′j = 0. Therefore, Bδ′(θ

∗) ∩ OF (θ∗) ⊂ {θ | ai = −aj}.

This implies ȧi + ȧj = 0 at θ∗ for any input x ∈ Rd. Thus, σ(w∗⊺
i x) + σ(−w∗⊺

i x) = 0 for
all x ∈ Rd. Since w∗

i ̸= 0, σ must be an odd function.

⇐=: Assume σ is odd and a∗i = −a∗j , w∗
i = −w∗

j . By Remark 5.1 the submanifold
{θ | ai = −aj ,wi = −wj} is a SIM. Therefore OF (θ∗) ⊂ {θ | ai = −aj ,wi = −wj} ⊂ {θ |
wi = −wj}. The case when σ is even and a∗i = a∗j , w

∗
i = −w∗

j is similar.
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Remark 5.2. Lemma 5.2 establishes that the θ∗ can be perturbed arbitrarily slightly
outside the specified subset. For example, in the first case, if w∗

i ̸= 0 or σ(0) ̸= 0, then for
any ϵ > 0, there exists a perturbed parameter θ′ ∈ OF (θ∗) such that ∥θ′ − θ∗∥2 < ϵ and
θ′ /∈ {(ai,wi)

m
i=1 | ai = 0}. This is why we refer to it as the perturbation lemma.

As observed in Remark 5.1 and Lemma 5.2, there are numerous cases to consider for
the activation function σ(x), such as whether σ(x) is odd or even, whether σ(0) = 0, and
whether σ′(0) = 0. To manage this complexity, we focus on two representative types of
activation: generic activation and generic odd activation.

Definition 5.2 (generic activation and generic odd activation). A real analytic
function σ : R → R is called a generic activation if it satisfies the following conditions:
(i): σ(x) is not a polynomial; (ii): σ(x) is neither an odd function nor an even function;
(iii): σ(0) ̸= 0 and σ′(0) ̸= 0.

Similarly, a real analytic function σ : R → R is called a generic odd activation if it
satisfies the following conditions: (i): σ(x) is not a polynomial; (ii): σ(x) is an odd function;
(iii): σ′(0) ̸= 0.

When the activation function is either a generic activation or a generic odd activation,
any degenerate parameter θ with trivial stabilizer subgroup S(θ) can always be perturbed
to a non-degenerate one. Once such a perturbation is made, Theorem 2.1 implies that the
Lie closure at θ has rank equal to (d+ 1)m. This idea is illustrated in Corollary 5.2.

Corollary 5.2. Consider the two-layer neural network. For θ = (ai,wi)
m
i=1 ∈ R(d+1)m, the

following holds:

(i) Assume σ(x) is a generic activation, and (ai,wi) ̸= (aj ,wj) for any i, j ∈ {1, . . . ,m}
with i ̸= j. Then there exists θ′ ∈ OF (θ) such that θ′ is non-degenerate. Thus,
dim(Lieθ(F)) = (d+ 1)m.

(ii) Assume σ(x) is a generic odd activation, and (ai,wi) ̸= ±(aj ,wj) for any i, j ∈
{1, . . . ,m}. Then there exists θ′ ∈ OF (θ) such that θ′ is non-degenerate. Thus,
dim(Lieθ(F)) = (d+ 1)m.

Proof. (i) Assume that σ(x) is generic activation, and assume (ai,wi) ̸= (aj ,wj) for any
i, j ∈ {1, . . . ,m}, i ̸= j. We now prove that there exists θ′ ∈ OF (θ) such that θ′ is
non-degenerate. Since σ(0) ̸= 0, by the first statement of Lemma 5.2, there exists θ1 =
(a1i ,w

1
i )
m
i=1 ∈ OF (θ) such that a1i ̸= 0 for all i ∈ {1, . . . ,m}. Moreover, θ1 can be arbitrary

close to θ such that (a1i ,w
1
i ) ̸= (a1j ,w

1
j ) for any i, j ∈ {1, . . . ,m}, i ̸= j. Since θ1 and θ are

on the same orbit, we regard them as equivalent. In sense of this equivalence, without loss
of generality we can assume that ai ̸= 0 for all i ∈ {1, . . . ,m}. By the second statement of
Lemma 5.2, without loss of generality we can assume that wi ̸= 0 for all i ∈ {1, . . . ,m}. If
there exists i ̸= j such that wi = wj , then ai ̸= aj . By the third statement of Lemma 5.2,
without loss of generality we can assume that wi ̸= wj for all i, j ∈ {1, . . . ,m} and i ̸= j. By
the fourth statement of Lemma 5.2 we can assume that wi ̸= −wj for all i ̸= j. Therefore
there exists non-degenerate θ′ on the orbit of θ.
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(ii) Assume that σ(x) is generic odd activation, and for any i, j ∈ {1, . . . ,m}, (ai,wi) ̸=
±(aj ,wj). Therefore for each i ∈ {1, . . . ,m}, either ai ̸= 0 or wi ̸= 0. If ai ̸= 0, by the
second statement of Lemma 5.2, without loss of generality we can assume that wi ̸= 0. If
wi ̸= 0, by the first statement of Lemma 5.2, without loss of generality we can assume that
ai ̸= 0. In both cases we can assume that ai ̸= 0,wi ̸= 0 for all i ∈ {1, . . . ,m}. If there exists
i ̸= j such that wi = wj , then ai ̸= aj . By the third statement of Lemma 5.2, without loss of
generality we can assume that wi ̸= wj for all i, j ∈ {1, . . . ,m} and i ̸= j. Similarly, if there
exists i ̸= j such that wi = −wj , then ai ̸= −aj . By the fourth statement of Lemma 5.2,
without loss of generality we can assume that wi ̸= −wj for all i, j ∈ {1, . . . ,m} and i ̸= j.
Therefore there exists a non-degenerate θ′ on the orbit of θ.

In both cases there exists a non-degenerate θ′ ∈ OF (θ). By Corollary 5.1, dim(Lieθ′(F)) =
(d+ 1)m. By Theorem 2.1, dim(Lieθ(F)) = dim(Lieθ′(F)) = (d+ 1)m.

The result of Corollary 5.2 can be extended to any parameter θ lying in each leaf of the
invariant partition induced by the orthogonal symmetry group, as shown in Corollary 5.3.

Corollary 5.3 (rank of Lie closure). Consider the two-layer neural network. Assume
that σ(x) is generic activation or generic odd activation. Then for any θ ∈ R(d+1)m,
dim(Lieθ(F)) is equal to the dimension of [θ].6

Proof. We claim that, for two-layer neural networks, the calculation of Lie algebra is neuron-
wise. We begin with the following definitions. Define the network of width k as Fk(θ)(x) =∑k

i=1 aiσ(w⊺
i x),x ∈ Rd,θ = (ai,wi) ∈ R(d+1)k, and define Fk = {∇θFk(·)(x) | x ∈ Rd}.

Denote Lie(Fk) to be the Lie algebra generated by Fk. Define F ′
k = {(X(ai,wi))

k
i=1 |

X ∈ Lie(F1)}, which is a family of vector fields on R(d+1)k. The specific model considered
is F (θ)(x) =

∑m
i=1 aiσ(w⊺

i x),x ∈ Rd,θ = (ai,wi) ∈ R(d+1)m for fixed m ∈ N+. For
notional simplicity, we omit the subscript m, using F,Lie(F),F ′ to denote Fm,Lie(Fm),F ′

m,
respectively.

For any positive integer k, and any X1, . . . , Xk ∈ F1, define Yj = (Xj(ai,wi))
m
i=1

for j = 1, . . . , k. Define the nested Lie brackets X = [X1, [X2, [· · · [Xk−1, Xk] · · · ]]] and
Y = [Y1, [Y2, [· · · [Yk−1, Yk] · · · ]]]. It is straightforward to verify by induction that Y =
(X(ai,wi))

m
i=1.

Let g(k) and g
(k)
1 denote the k-th terms in the lower central series of F and F1, re-

spectively. The lower central series g(1), g(2), . . . of a family of vector fields F̃ is defined
recursively by g(1) = F̃ and g(k+1) = [g, g(k)], where the bracket denotes the Lie bracket.
From the identity Y = (X(ai,wi))

m
i=1, and the fact that F = {(X(ai,wi))

m
i=1 | X ∈ F1}, it

follows that g(k) = {(X(ai,wi))
m
i=1 | X ∈ g

(k)
1 } for all k ∈ N+. Consequently, we conclude

that F ′ = Lie(F).
(i) Assume the activation function to be a generic activation. Fix any θ = (ai,wi)

m
i=1 ∈

R(d+1)m. By Proposition 5.1, [θ] = MP for some partition P = {B1, . . . , Bs} of {1, . . . ,m}.
By definition of MP , we have dim([θ]) = dim(MP) = (d + 1)s. Next we calculate
dim(Lieθ(F)). Since Lie(F) = F ′, we have Lieθ(F) = F ′|θ. For each p = 1, . . . , s, se-
lect kp ∈ Bp. We then define θ′ = (akp ,wkp)sp=1. Similarly, Lieθ′(Fs) = F ′

s|θ′ . Define a

6. For generic activation and generic odd activation, the orthogonal symmetry group is the permutation
symmetry group Gper and the combined symmetry group Gcombine, respectively.
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linear map P : F ′|θ → R(d+1)s by: (a∗i ,w
∗
i )
m
i=1 7→ (a∗kp ,w

∗
kp

)sp=1, ∀(a∗i ,w
∗
i )
m
i=1 ∈ F ′|θ. By

definition of F ′
s|θ′ , P is a surjection onto F ′

s|θ′ . It implies that dim(Lieθ(F)) = dim(F ′|θ) ≥
dim(F ′

s|θ′) = dim(Lieθ′(Fs)). Since θ ∈ MP , it follows that (akp ,wkp) ̸= (akq ,wkq) for any
p, q ∈ {1, . . . , s} and p ̸= q. By Corollary 5.2, dim(Lieθ′(Fs)) = (d + 1)s. Therefore
dim(Lieθ(F)) ≥ dim(Lieθ′(Fs)) = (d+ 1)s. By Theorem 2.1, the tangent space of OF (θ) at
θ is Lieθ(F). By Lemma 4.1, [θ] is a SIM. So OF (θ) ⊂ [θ]. Take this inclusion to tangent
space gives dim(Lieθ(F)) ≤ (d+ 1)s. Thus, dim(Lieθ(F)) = (d+ 1)s.

(ii) We now consider the case where the activation function is a generic odd function and
the symmetry group is the combined orthogonal group. The proof is analogous to that of (i);
hence, we omit several details for brevity. By Proposition 5.2, we have [θ] = MP,γ for some
P = {B1, . . . , Bs} and γ ∈ {−1, 1}m. Then dimension is therefore dim([θ]) = (d+1)(s−1).
A similar argument establishes that Lieθ(F) ≥ Lieθ′(Fs−1), where θ′ = (akp ,wkp)sp=2 for
kp ∈ Bp with p = 2, . . . , s. Subsequently, by Corollary 5.2, it follows that dim(Lieθ′(F)) =
(d + 1)(s − 1). Then some straightforward reasoning leads to dim(Lieθ(F)) = dim([θ]) =
(d+ 1)(s− 1).

5.2 Orbits

Corollary 5.3 establishes that, on each leaf of the invariant partition, the rank of the Lie
closure equals the dimension of the leaf itself. In this case, Theorem 2.1 indicates that
determining the orbit reduces to verifying the connectivity of each leaf. In Corollary 5.4,
we show that every leaf is indeed connected.

Corollary 5.4. Consider the two-layer neural network, and assume that σ(x) is either a
generic activation or a generic odd activation. Then, for all θ ∈ R(d+1)m, the equivalence
class [θ] is connected.

Proof. We begin by presenting a standard lemma from manifold geometry (Conrad).

Lemma 5.3 (derived from Theorem 1.1 in Conrad). Let A1, . . . , An be linear sub-
spaces of RM , each with codimension at least 2. Then the set RM \

⋃n
i=1Ai is connected.

We now return to the proof of the corollary. As shown in Propositions 5.1 and 5.2, for
any θ ∈ RM , the corresponding leaf [θ] takes the form [θ] = B \ (

⋃s
i=1Ai) , where B ⊂ RM

is a linear subspace, and each Ai ⊂ B is a linear subspace of B with dim(Ai) ≤ dim(B)−2.
By Lemma 5.3, such a set [θ] is connected.

With the necessary preliminaries established, we are now in a position to present The-
orem 5.1, which serves as the principal result of this section.

Theorem 5.1 (SIMs are all symmetry-induced for generic two-layer neural net-
works). Consider the two-layer neural network, and assume that σ(x) is either a generic
activation or a generic odd activation. Then for any θ ∈ R(d+1)m, [θ] = OF (θ).

Proof. For any θ ∈ R(d+1)m, Corollary 5.3 implies that dim(Lieθ(F)) = dim([θ]), where
dim([θ]) denotes the dimension of [θ]. By Corollary 5.4, the set [θ] is connected. According
to Lemma 4.1, [θ] is a SIM. So F can be regarded as a family of vector fields defined on
[θ]. Applying Theorem 2.1, it then follows that [θ] = OF (θ), ∀θ ∈ R(d+1)m.
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6. Conclusions

In this work, we lay the theoretical foundation for identifying SIMs in analytic parametric
models by employing geometric control theory. By uncovering the hierarchy of symmetry-
induced SIMs for deep neural networks and enumerating all SIMs for the two-layer network,
we unravel the profound dynamical consequence of the layer-wise neural network architec-
ture. These SIMs display condensation behavior and underlie the remarkable potential for
target recovery in overparameterized settings. Although the milestone of fully solving the
recovery puzzle for neural networks has not yet been reached, these SIMs offer powerful
tools for tracing global training dynamics. Building on our findings, we anticipate major
breakthroughs in solving the recovery puzzle in the near future. Such advances will pave
the way for a comprehensive generalization theory that clarifies how architecture design,
target properties, training samples, nonlinear dynamics, and parameter tuning collectively
shape the generalization of neural networks.
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Appendix A. Definitions

In the appendix, we present several definitions and concepts from geometric control theory
that are pertinent to the content of this paper. As our analysis is conducted within the
analytic category, all definitions are stated in their analytic form. The material is drawn
from Jurdjevic (1997) and Ortega and Ratiu (2013).

A.1 Differential Geometry

Definition A.1 (analytic manifold, page 3 and 4 of Jurdjevic (1997))). M is called
an n dimensional analytic manifold if M is a topology space such that at each point p ∈ M
there exists a neighbourhood U of p and a homeomorphism ϕ from U onto an open subset
of Rn. It is assumed that n does not vary with the choice of a point p on M. The pair
(ϕ,U) is called a chart at p. Moreover:

(i) There exists a countable collection of charts {(ϕi, Ui)}∞i=1 such that M =
⋃∞
i=1 Ui.

(ii) For each pair of points p1 and p2, there exist charts (ϕ1, U1) and (ϕ2, U2) such that
p1 ∈ U1, p2 ∈ U2, and U1 ∩ U2 = ∅. That is, points of M are separated by coordinate
neighborhoods (i.e., M is Hausdorff).

(iii) For any charts (ϕ1, U1) and (ϕ2, U2) such that U1 ∩ U2 ̸= ∅, the mapping ϕ1 ◦ ϕ−1
2 is

analytic as a mapping from an open set in Rn into Rn.

Definition A.2 (analytic vector fields, Definition 1 in Chapter 1 of Jurdjevic
(1997)). Let M be an analytic manifold. The totality of (p, v), p ∈ M, v ∈ TpM, is
called the tangent bundle of M and is denoted by TM. A vector field is a mapping
X : M → TM such that for each p ∈ M, if π : TM → M denotes the natural projection,
then π

(
X(p)

)
= p. We say that X is an analytic vector field if X is an analytic map from

M (as an analytic manifold) into TM (another analytic manifold).

Definition A.3 (integral curve, Definition 3 in Chapter 1 of Jurdjevic (1997)).
A differential curve p(t), t ∈ J on M is an integral curve of an analytic vector field X if
dp
dt = X ◦ p for each t in J . We shall say an integral curve p(t), t ∈ J of X is the integral
curve through p0 ∈ M if p(0) = p0 and the domain J ⊂ R is maximal.

Definition A.4 (complete vector field, flow, etX , Definition 4 in Chapter 1 of
Jurdjevic (1997)). A vector field X is called complete if the integral curves through each
point p0 in M are defined for all values of t in R. In such a case, X is said to define a flow
Φ on M. Φ : R × M → M is defined by Φ(t, p0) = p(t), where p(t) is the integral curve
through p0. For each t, define the mapping Φt(p) = Φ(t, p). We shall also use etX to denote
the mapping Φt.

Remark A.1 (page 16 of Jurdjevic (1997)). For complete vector fields, its flow Φ has
following properties:

(i) Φ(0, p) = p for all p ∈ M.

(ii) Φ(t+ s, p) = Φ(t,Φ(s, p)) for all (s, t) in R2 and all p ∈ M.

(iii) (∂/∂t)Φ(t, p) = X ◦ Φ(t, p) for all (t, p) in R×M.

(iv) The mapping Φ is analytic whenever X is analytic.

(v) For each t, etX is a diffeomorphism on M.
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Definition A.5 (local flow, page 17 of Jurdjevic (1997)). Let X be an analytic vector
(possibly non-complete) field on an analytic manifold M. In order to define the local flow
of a vector field at p in M, it is first necessary to define the escape times of the integral
curve of X through p. The positive escape time e+(p) is defined to be the supremum of
the domain of the integral curve through p. The negative escape time e−(p) is defined
similarly. Let ∆ = {(t, p) | e−(p) < t < e+(p)}. Then ∆ is an open subset of R×M and a
neighborhood of {0} ×M. The local flow Φ of X is defined on ∆.

Remark A.2 (page 17 of Jurdjevic (1997)). The local flow Φ satisfies the following:

(i) Φ(0, p) = p for all p ∈ ∆.

(ii) Φ(t+ s, p) = Φ(t,Φ(s, p)) whenever each of (s, p) and (t,Φ(s, p)) is contained in ∆.

(iii) (∂Φ/∂t)(t, p) = X ◦ Φ(t, p) for all (p, t) in ∆.

(iv) Φ is analytic whenever X is analytic.

Definition A.6 (immersed submanifold, Definition 1 in Chapter 2 of Jurdjevic
(1997)). An differentiable mapping f between two differential manifolds is called an im-
mersion if the rank of the tangent map of f at each point is equal to the dimension of the
domain manifold. Then the definition of an immersed submanifold is as follows: Given two
differentiable manifolds M and N , if there exists an immersion f : N → M, then f(N ) is
called an immersed submanifold of M.

A.2 Local Diffeomorphisms and Pseudogroups

The materials of A.2 are from Section 3.1 of Ortega and Ratiu (2013).

A.2.1 Local diffeomorphisms

Let M be an analytic manifold. The symbol Diff(M) will denote the set of diffeomorphisms
of M. The symbol DiffL(M) will denote the set of local diffeomorphisms of M. More
explicitly, the elements of DiffL(M) are diffeomorphisms f : Dom(f) ⊂ M → f(Dom(f)) ⊂
M of an open subset Dom(f) ⊂ M onto its image f(Dom(f)) ⊂ M. We will denote the
elements of DiffL(M) as pairs (f,Dom(f)). The local diffeomorphisms can be composed
using the binary operation defined as

(f,Dom(f)) · (g,Dom(g)) := (f ◦ g,Dom(f) ∩ Dom(g)), (6)

for all (f,Dom(f)), (g,Dom(g)) ∈ DiffL(M). It is easy to see that this operation is asso-
ciative and has (id,M), the identity map of M, as a (unique) two-sided identity element,
which makes DiffL(M) into a monoid (set with an associative operation which contains a
two-sided identity element). Notice that only the elements in Diff(M) ⊂ DiffL(M) have
an inverse since, in general, for any (f,Dom(f)) ∈ DiffL(M), we have that

(f−1,Dom(f−1)) · (f,Dom(f)) = (id|Dom(f),Dom(f)) (7)

(f,Dom(f)) · (f−1,Dom(f−1)) = (id|Dom(f−1),Dom(f−1)). (8)

Consequently, the only way to obtain the identity element (id,M) out of the composition
of f with its inverse is having Dom(f) = M. It follows from this argument that Diff(M)
is the biggest subgroup contained in the monoid DiffL(M) with respect to the composition
law Eq. (6).
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A.2.2 Pseudogroups

Definition A.7 (pseudogroup). For a submonoidA of DiffL(M), if for any f : Dom(f) →
f(Dom(f)) ∈ A there exists another element f−1 : f(Dom(f)) → Dom(f) also in A that sat-
isfies the identities Eq. (7) and Eq. (8), then A is referred to as a pseudogroup of DiffL(M).

Remark A.3. One of the important features of pseudogroups is that they have an asso-
ciated orbit space. Indeed, if A is a pseudogroup we define the orbit A · p under A of any
element p ∈ M as the set A · p := {f(p) | f ∈ A, such that p ∈ Dom(f)}. A being a
pseudogroup implies that the relation being in the same A-orbit is an equivalence relation
and induces a partition of M into A-orbits.

A.2.3 Pseudogroups generated by arrow

A significant number of integrable pseudogroups are generated by collections of arrows (see
Stefan (1974)).

Definition A.8 (arrow). An arrow is a differentiable mapping Φ : U ⊂ R × M → M
whose domain U is an open subset of R×M and that, additionally, satisfies:

(i) For every t ∈ R, the map Φt := Φ(t, ·) is a local diffeomorphism of M (possibly with
empty domain).

(ii) If the point (t, p) belongs to the domain of Φ, then so does (s, p) for every s ∈ [0, t].
Moreover, Φ(0, p) = p.

An example of an arrow is the flow of an analytic vector field on M. Let E be a collection
of arrows on M. We associate E to a set AE ⊂ DiffL(M) of local diffeomorphisms defined
by AE := {Φt | Φ ∈ E, t ∈ R}, which at the same time, generates a pseudogroup

AE = (id,M)∪
⋃
n

{Φ1◦· · ·◦Φn | n ∈ N and for all i = 1, 2, . . . , n,Φi ∈ AE or (Φi)
−1 ∈ AE}.

A.3 Reachable Set and Orbit

Definition A.9 (integral curve of a family of vector fields, Definition 5 in Chapter
1 of Jurdjevic (1997)). Let F be a family of analytic vector fields on an analytic manifold
M. A continuous curve p(t) in M, defined on an interval [0, T ], is called an integral curve
of F if there exist a partition 0 = t0 < t1 < · · · < tk = T and vector fields X1, . . . , Xk

in F such that the restriction of p(t) to each open interval (ti−1, ti) is differentiable, and
dp(t)
dt = Xi(p(t)) for i = 1, . . . , k.

Definition A.10 (reachable set, Definition 6 in Chapter 1 of Jurdjevic (1997)).
Let F be a family of analytic vector fields on an analytic manifold M.

(i) For each T ≥ 0, and each p0 in M, the set of points reachable from p0 at time T ,
denoted by R(p0, T ), is defined to be the set of the terminal points p(T ) of integral
curves of F that originate at p0.

(ii) The union of R(p0, T ), for T ≥ 0, is called the set reachable from p0. We will denote it
by R(p0).
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Remark A.4 (page 28 of Jurdjevic (1997)). The reachable sets admit further geo-
metric descriptions through the following formalism. Assuming that the elements of F are
all complete vector fields, then each element X in F generates a one-parameter group of
diffeomorphisms {etX | t ∈ R1}. Let G(F) denote the subgroup of the group of diffeomor-
phisms in M generated by the union of {etX | t ∈ R, X ∈ F}. Each element Φ of G(F) is
a diffeomorphism of M of the form

Φ = etkXk ◦ etk−1Xk−1 ◦ · · · ◦ et1X1

for some real numbers t1, . . . , tk and vector fields X1, . . . , Xk in F . G(F) acts on M in the
obvious way and partitions M into its orbits. Then the set reachable through p0 at time T
consists of all points Φ(p0) corresponding to elements Φ of G(F) that can be expressed as
Φ = etkXk ◦etk−1Xk−1 ◦· · ·◦et1X1 , with t1 ≥ 0, . . . , tk ≥ 0, t1+ · · ·+tk = T , and X1, . . . , Xk in
F . The other reachable sets have analogous descriptions. In particular, R(p0) is equal to the
orbit of the semigroup SF through p0, with SF equal to the semigroup of all elements Φ in
G(F) of the form Φ = etkXk ◦ etk−1Xk−1 ◦ · · · ◦ et1X1 , with t1 ≥ 0, . . . , tk ≥ 0, and X1, . . . , Xk

in F . The orbit of SF through p0, written as SF (p0), is equal to {Φ(p0) | Φ ∈ SF}.
When some elements of F are not complete, then it becomes necessary to replace the

corresponding groups of diffeomorphisms by local groups, and everything else remains the
same.

Definition A.11 (orbit of family of vector fields). Let F be a family of analytic vector
fields on an analytic manifold M. Let G denote the group (pseudogroup) of diffeomorphisms
(local diffeomorphisms) generated by {etX | t ∈ R, X ∈ F}. Then the orbit of F through p
is defined to be {ϕ(p) | ϕ ∈ G}.

A.4 Lie Algebra

Definition A.12 (Lie bracket, page 40 of Jurdjevic (1997)). Analytic vector fields
act as derivations on the space of analytic functions. Moreover, If X denotes an analytic
vector field, and h an analytic function on M, then Xh will denote the function p 7→
X(p)(h). For any analytic vector fields X and Y , their Lie bracket [X,Y ] is defined by
[X,Y ]h = Y (Xh) −X(Y h).

Remark A.5 (page 40 of Jurdjevic (1997)). If both X and Y are analytic vec-
tor fields on an analytic manifold M, then [X,Y ] is an analytic vector field. Let p ∈
M and (ϕ,U) be a chart at p. The map ϕ : U → Rn gives a local coordinate p →
(x1(p), . . . , xn(p)). In terms of the local coordinates, [X,Y ] is given by the following re-
lations: let X(p) =

∑n
i=1 ai(x1, . . . , xn)(∂/∂xi), Y (p) =

∑n
i=1 bi(x1, . . . , xn)(∂/∂xi), and

[X,Y ](p) =
∑n

i=1 ci(x1, . . . , xn)(∂/∂xi). Then

ci =
n∑
j=1

(
∂ai
∂xj

bj −
∂bi
∂xj

aj

)
, i = 1, 2, . . . , n. (9)

Definition A.13 (Lie algebra of analytic vector fields, page 42 of Jurdjevic
(1997)). Let Xω(M) denote the space of all analytic vector fields on M. Xω(M) is a
real vector space under the pointwise addition of vectors

(αX + βY )(p) = αX(p) + βY (p) for all p ∈ M (10)
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for each set of real numbers α and β and vector fields X and Y . We shall regard Xω(M)
as an algebra, with the addition given by Eq. (10) and with the product given by the Lie
bracket.
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