
Commun. Comput. Phys.
doi: 10.4208/cicp.OA-2020-0085

Vol. 28, No. 5, pp. 1746-1767
November 2020

Frequency Principle: Fourier Analysis Sheds Light

on Deep Neural Networks

Zhi-Qin John Xu1,∗, Yaoyu Zhang2, Tao Luo1, Yanyang Xiao3 and
Zheng Ma1

1 School of Mathematical Sciences and Institute of Natural Sciences, Shanghai Jiao
Tong University, Shanghai 200240, China.
2 School of Mathematics, Institute for Advanced Study, Princeton, NJ 08540, USA.
3 Brain Cognition and Brain Disease Institutes of Shenzhen Institutes of Advanced
Technology, Chinese Academy of Sciences, Shenzhen 518055, China.

Received 9 May 2020; Accepted (in revised version) 16 July 2020

Abstract. We study the training process of Deep Neural Networks (DNNs) from the
Fourier analysis perspective. We demonstrate a very universal Frequency Principle
(F-Principle) — DNNs often fit target functions from low to high frequencies — on
high-dimensional benchmark datasets such as MNIST/CIFAR10 and deep neural net-
works such as VGG16. This F-Principle of DNNs is opposite to the behavior of Jacobi
method, a conventional iterative numerical scheme, which exhibits faster convergence
for higher frequencies for various scientific computing problems. With theories un-
der an idealized setting, we illustrate that this F-Principle results from the smooth-
ness/regularity of the commonly used activation functions. The F-Principle implies
an implicit bias that DNNs tend to fit training data by a low-frequency function. This
understanding provides an explanation of good generalization of DNNs on most real
datasets and bad generalization of DNNs on parity function or a randomized dataset.

AMS subject classifications: 68Q32, 65N06, 68T01

Key words: Deep learning, training behavior, generalization, Jacobi iteration, Fourier analysis.

1 Introduction

Understanding the training process of Deep Neural Networks (DNNs) is a fundamental
problem in the area of deep learning. We find a common behavior of the gradient-based
training process of DNNs, that is, a Frequency Principle (F-Principle):

∗Corresponding author. Email addresses: xuzhiqin@sjtu.edu.cn (Z.-Q. J. Xu), yaoyu@ias.edu (Y. Zhang),
luotao41@sjtu.edu.cn (T. Luo), yy.xiao@siat.ac.cn (Y. Xiao), Wudy MZ@sjtu.edu.cn (Z. Ma)

http://www.global-sci.com/cicp 1746 c©2020 Global-Science Press

Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767 1747

DNNs often fit target functions from low to high frequencies during the training process.

In another word, at the early stage of training, the low-frequencies are fitted and as
iteration steps of training increase, the high-frequencies are fitted. For example, when a
DNN is trained to fit y=sin(x)+sin(2x), its output would be close to sin(x) at early stage
and as training goes on, its output would be close to sin(x)+sin(2x). Along with our pre-
vious works in [34], this paper is one of works that first discovery the F-Principle. In the
same time, another group † independently found the F-Principle (or spectral bias) [26]. F-
Principle was verified empirically in synthetic low-dimensional data with MSE loss dur-
ing DNN training [26, 34]. However, in deep learning, empirical phenomena could vary
from one network structure to another, from one dataset to another and could exhibit sig-
nificant difference between synthetic data and high-dimensional real data. Therefore, the
universality of the F-Principle remains an important problem for further study. Especially
for high-dimensional real problems, because the computational cost of high-dimensional
Fourier transform is prohibitive in practice, it is of great challenge to demonstrate the
F-Principle. On the other hand, the mechanism underlying the F-Principle and its impli-
cation to the application of DNNs, e.g., design of DNN-based PDE solver, as well as their
generalization ability are also important open problems to be addressed.

In this work, we design two methods, i.e., projection and filtering methods, to show
that the F-Principle exists in the training process of DNNs for high-dimensional bench-
marks, i.e., MNIST [22], CIFAR10 [21]. The settings we have considered are i) different
DNN architectures, e.g., fully-connected network, convolutional neural network (CNN),
and VGG16 [28]; ii) different activation functions, e.g., tanh and rectified linear unit
(ReLU); iii) different loss functions, e.g., cross entropy, mean squared error (MSE), and
loss energy functional in variational problems. These results demonstrate the universal-
ity of the F-Principle.

To facilitate the designs and applications of DNN-based schemes, we characterize a
stark difference between DNNs and the Jacobi method, a conventional numerical scheme
exhibiting the opposite convergence behavior — faster convergence for higher frequen-
cies. Numerical methods [5,7,31], such as well-known multigrid method [5,31], are devel-
oped to accelerate the convergence for low frequency. As the DNN-based schemes have
potential to solve high-dimensional problems [8, 13–15, 17, 19, 30, 32], the low-frequency
bias of DNN can be adopted to accelerate the convergence of low frequencies for compu-
tational problems.

We also intuitively explain with theories under an idealized setting how the smooth-
ness/regularity of commonly used activation functions contributes to the F-Principle.
Note that this mechanism is rigorously demonstrated for DNNs of general settings in a
subsequent work [23]. Finally, we discuss that the F-Principle provides an understand-
ing of good generalization of DNNs in many real datasets [37] and poor generalization
in learning the parity function [25, 27], that is, the F-Principle which implies that DNNs
prefer low frequencies, is consistent with the property of low frequencies dominance in

†We acknowledge each other after communication with authors in [26]

1748 Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767

many real datasets, e.g., MNIST/CIFAR10, but is different from the parity function whose
spectrum concentrates on high frequencies. Compared with previous studies, our main
contributions are as follows:

1. By designing both the projection and filtering methods, we consistently demon-
strate the F-Principle for MNIST/CIFAR10 over various architectures such as VGG16
and various loss functions.

2. For the application of solving differential equations, we show that (i) conventional
numerical schemes learn higher frequencies faster whereas DNNs learn lower fre-
quencies faster by the F-Principle, (ii) convergence of low frequencies can be greatly
accelerated with DNN-based schemes.

3. We present theories under an idealized setting to illustrate how smooth-
ness/regularity of activation function contributes to the F-Principle.

4. We discuss in detail the implication of the F-Principle to the generalization of DNNs
that DNNs are implicitly biased towards a low frequency function and provide an
explanation of good and poor generalization of DNNs for low and high frequency
dominant target functions, respectively.

2 Frequency principle

The concept of “frequency” is central to the understanding of F-Principle. In this paper,
the “frequency” means response frequency NOT image (or input) frequency as explained in
the following.

Image (or input) frequency (NOT used in the paper): Frequency of 2-d function I :
R

2 → R representing the intensity of an image over pixels at different locations. This
frequency corresponds to the rate of change of intensity across neighbouring pixels. For
example, an image of constant intensity possesses only the zero frequency, i.e., the lowest
frequency, while a sharp edge contributes to high frequencies of the image.

Response frequency (used in the paper): Frequency of a general Input-Output mapping
f . For example, consider a simplified classification problem of partial MNIST data using
only the data with label 0 and 1, f (x1,x2,··· ,x784) : R

784 →{0,1} mapping 784-d space of
pixel values to 1-d space, where xj is the intensity of the j-th pixel. Denote the mapping’s

Fourier transform as f̂ (k1,k2,··· ,k784). The frequency in the coordinate kj measures the
rate of change of f (x1,x2,··· ,x784) with respect to xj, i.e., the intensity of the j-th pixel. If f
possesses significant high frequencies for large kj, then a small change of xj in the image
might induce a large change of the output (e.g., adversarial example). For a dataset with
multiple classes, we can similarly define frequency for each output dimension. For real
data, the response frequency is rigorously defined via the standard nonuniform discrete
Fourier transform (NUDFT) as follows.

Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767 1749

In all our experiments, we consistently consider the response frequency defined for
the mapping function g between inputs and outputs, say R

d →R and any k∈R
d via the

standard nonuniform discrete Fourier transform (NUDFT)

ĝk =
1

n

n−1

∑
i=0

g(xi)e
−i2πk·xi , (2.1)

which is a natural estimator of frequency composition of g. As n → ∞, ĝk →
∫

g(x)e−i2πk·xν(x) dx, where ν(x) is the data distribution.
We restrict all the evaluation of Fourier transform in our experiments to NUDFT of

{yi}
n−1
i=0 at {xi}

n−1
i=0 for the following practical reasons.

(i) The information of target function is only available at {xi}
n−1
i=0 for training.

(ii) It allows us to perform the convergence analysis. As t→∞, in general, h(xi,t)→yi

for any i (h(xi,t) is the DNN output), leading to ĥk→ŷk for any k. Therefore, we can
analyze the convergence at different k by evaluating ∆F(k)= |ĥk− ŷk|/|ŷk | during
the training. If we use a different set of data points for frequency evaluation of
DNN output, then ∆F(k) may not converge to 0 at the end of training.

(iii) ŷk faithfully reflects the frequency structure of training data {xi,yi}
n−1
i=0 . Intuitively,

high frequencies of ŷk correspond to sharp changes of output for some nearby
points in the training data. Then, by applying a Gaussian filter and evaluating
still at {xi}

n−1
i=0 , we obtain the low frequency part of training data with these sharp

changes (high frequencies) well suppressed.

In practice, it is impossible to evaluate and compare the convergence of all k ∈ R
d

even with a proper cutoff frequency for a very large d of O(102) (MNIST) or O(103) (CI-
FAR10) due to curse of dimensionality. Therefore, we propose the projection approach,
i.e., fixing k at a specific direction, and the filtering approach as detailed in Section 3 and
4, respectively.

Frequency Principle: DNNs often fit target functions from low to high (response) frequencies
during the training process. The F-Principle is rigorously defined through the frequency
defined by the Fourier transform (Eq. (2.1)) and the converging speed defined by the
relative error. By using high-dimensional real datasets, we then experimentally demon-
strate the F-Principle at the levels of both individual frequencies (projection method) and
coarse-grained frequencies (filtering method).

To illustrate the phenomenon of F-Principle, we use 1-d synthetic data to show the
evolution of relative training error at different frequencies during the training of DNN.
We train a DNN to fit a 1-d target function f (x) = sin(x)+sin(3x)+sin(5x) of three
frequency components. On n = 201 evenly spaced training samples, i.e., {xi}

n−1
i=0 in

[−3.14,3.14], the discrete Fourier transform (DFT) of f (x) or the DNN output (denoted by
h(x)) is computed by f̂k =

1
n ∑

n−1
i=0 f (xi)e

−i2πik/n and ĥk =
1
n ∑

n−1
i=0 h(xi)e

−i2π jk/n, where k is

1750 Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767

Figure 1: 1d input. (a) f (x). Inset : | f̂ (k)|. (b) ∆F(k) of three important frequencies (indicated by black dots
in the inset of (a)) against different training epochs. The parameters of the DNN is initialized by a Gaussian
distribution with mean 0 and standard deviation 0.1. We use a tanh-DNN with widths 1-8000-1 with full batch
training. The learning rate is 0.0002. The DNN is trained by Adam optimizer [20] with the MSE loss function.

the frequency. As shown in Fig. 1(a), the target function has three important frequencies
as we design (black dots at the inset in Fig. 1(a)). To examine the convergence behavior
of different frequency components during the training with MSE, we compute the rela-
tive difference between the DNN output and the target function for the three important
frequencies k’s at each recording step, that is, ∆F(k)= |ĥk− f̂k|/| f̂k |, where |·| denotes the
norm of a complex number. As shown in Fig. 1(b), the DNN converges the first frequency
peak very fast, while converging the second frequency peak much slower, followed by
the third frequency peak.

Next, we investigate the F-Principle on real datasets with more general loss functions
other than MSE which was the only loss studied in the previous works [26, 34].

3 F-Principle in MNIST/CIFAR10 through projection method

Real datasets are very different from synthetic data used in previous studies. In order to
utilize the F-Principle to understand and better use DNNs in real datasets, it is important
to verify whether the F-Principle also holds in high-dimensional real datasets.

In the following experiments, we examine the F-Principle in a training dataset of
{(xi,yi)}

n−1
i=0 where n is the size of dataset. xi ∈ R

d is a vector representing the image
and yi ∈{0,1}10 is the output (a one-hot vector indicating the label for the dataset of im-
age classification). d is the dimension of the input (d=784 for MNIST and d=32×32×3
for CIFAR10). Since the high dimensional discrete Fourier transform (DFT) requires pro-
hibitively high computational cost, in this section, we only consider one direction in the
Fourier space through a projection method for each examination.

Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767 1751

3.1 Examination method: Projection

For a dataset {(xi,yi)}
n−1
i=0 we consider one entry of 10-d output, denoted by yi ∈ R.

The high dimensional discrete non-uniform Fourier transform of {(xi,yi)}
n−1
i=0 is ŷk =

1
n ∑

n−1
i=0 yi exp(−i2πk·xi). The number of all possible k grows exponentially on dimen-

sion d. For illustration, in each examination, we consider a direction of k in the Fourier
space, i.e., k = kp1, p1 is a chosen and fixed unit vector, hence |k| = k. Then we
have ŷk =

1
n ∑

n−1
i=0 yi exp

(

−i2π(p1 ·xj)k
)

, which is essentially the 1-d Fourier transform of

{(xp1,i,yi)}
n−1
i=0 , where xp1,i = p1 ·xi is the projection of xi on the direction p1 [4]. For each

training dataset, p1 is chosen as the first principle component of the input space. To ex-
amine the convergence behavior of different frequency components during the training,
we compute the relative difference between the DNN output and the target function for
selected important frequencies k’s at each recording step, that is, ∆F(k) = |ĥk− ŷk|/|ŷk |,
where ŷk and ĥk are 1-d Fourier transforms of {yi}

n−1
i=0 and the corresponding DNN

output{hi}
n−1
i=0 , respectively, along p1. Note that each response frequency component,

ĥk, of DNN output evolves as the training goes.

3.2 MNIST/CIFAR10

In the following, we show empirically that the F-Principle is exhibited in the selected
direction during the training process of DNNs when applied to MNIST/CIFAR10 with
cross-entropy loss. The network for MNIST is a fully-connected tanh DNN (784-400-200-
10) and for CIFAR10 is two ReLU convolutional layers followed by a fully-connected
DNN (800-400-400-400-10). We consider one of the 10-d outputs in each case using non-
uniform Fourier transform. After training, the training accuracy is 0.951 and 0.98 for
MNIST and CIFAR10, respectively. The test accuracy is 0.963 and 0.72 for MNIST and
CIFAR10, respectively. As shown in Fig. 2(a) and 2(c), low frequencies dominate in both
real datasets. During the training, the evolution of relative errors of certain selected fre-
quencies (marked by black squares in Fig. 2(a) and 2(c)) is shown in Fig. 2(b) and 2(d).
One can easily observe that DNNs capture low frequencies first and gradually capture
higher frequencies. Clearly, this behavior is consistent with the F-Principle. For other
components of the output vector and other directions of p, similar phenomena are also
observed.

4 F-Principle in MNIST/CIFAR10 through filtering method

The projection method in the previous section enables us to visualize the F-Principle
in one direction for each examination at the level of individual frequency components.
However, demonstration by this method alone is insufficient because it is impossible
to verify the F-Principle at all potentially informative directions for high-dimensional
data. To compensate the projection method, in this section, we consider a coarse-grained

1752 Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767

Figure 2: Projection method. (a, b) are for MNIST, (c, d) for CIFAR10. (a, c) Amplitude |ŷk| vs. frequency.
Selected frequencies are marked by black squares. (b, d) ∆F(k) vs. training epochs for the selected frequencies.
For MNIST dataset, we use a tanh-DNN with widths 784-400-200-10, learning rate 0.001, and batch size 10000.
For CIFAR10 dataset, we use a ReLU-CNN, which consists of one convolution layer of 3×3×64, a max pooling
of 2×2, one convolution layer of 3×3×128, a max pooling of 2×2, followed by a fully-connected DNN with
widths 800-400-400-400-10. The learning rate is 0.003 with batch size 512. For both cases, the output layer of
the network is equipped with a softmax. The DNNs are trained with cross entropy loss by Adam optimizer.

filtering method which is able to unravel whether, in the radially averaged sense, low
frequencies converge faster than high frequencies.

4.1 Examination method: Filtering

The idea of the filtering method is as follows. We split the frequency domain into two
parts, i.e., a low-frequency part with |k| ≤ k0 and a high-frequency part with |k|> k0,
where |·| is the length of a vector. The DNN is trained as usual by the original dataset
{(xi,yi)}

n−1
i=0 , such as MNIST or CIFAR10. The DNN output is denoted as h. During the

training, we can examine the convergence of relative errors of low- and high-frequency
part, using the two measures below

elow =

(

∑k1|k|≤k0
|ŷ(k)−ĥ(k)|2

∑k1|k|≤k0
|ŷ(k)|2

)
1
2

, (4.1)

ehigh=

(

∑k(1−1|k|≤k0
)|ŷ(k)−ĥ(k)|2

∑k(1−1|k|≤k0
)|ŷ(k)|2

) 1
2

, (4.2)

respectively, where ·̂ indicates Fourier transform, 1k≤k0
is an indicator function, i.e.,

1|k|≤k0
=

{

1, |k|≤ k0,

0, |k|> k0.

If we consistently observe elow<ehigh for different k0’s during the training, then in a mean
sense, lower frequencies are first captured by the DNN, i.e., F-Principle.

However, because it is almost impossible to compute above quantities numerically
due to high computational cost of high-dimensional Fourier transform, we alternatively
use the Fourier transform of a Gaussian function Ĝδ(k), where δ is the variance of the
Gaussian function G, to approximate 1|k|>k0

. This is reasonable due to the following two

Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767 1753

reasons. First, the Fourier transform of a Gaussian is still a Gaussian, i.e., Ĝδ(k) decays
exponentially as |k| increases, therefore, it can approximate 1|k|≤k0

by Ĝδ(k) with a proper
δ(k0) (referred to as δ for simplicity). Second, the computation of elow and ehigh contains
the multiplication of Fourier transforms in the frequency domain, which is equivalent
to the Fourier transform of a convolution in the spatial domain. We can equivalently
perform the examination in the spatial domain so as to avoid the almost impossible high-
dimensional Fourier transform. The low frequency part can be derived by

ylow,δ
i , (y∗Gδ)i, (4.3)

where ∗ indicates convolution operator, and the high frequency part can be derived by

y
high,δ
i ,yi−ylow,δ

i . (4.4)

Then, we can examine

elow =

(

∑i |y
low,δ
i −hlow,δ

i |2

∑i |y
low,δ
i |2

) 1
2

, (4.5)

ehigh=

(

∑i |y
high,δ
i −h

high,δ
i |2

∑i |y
high,δ
i |2

)
1
2

, (4.6)

where hlow,δ and hhigh,δ are obtained from the DNN output h, which evolves as a func-
tion of training epoch, through the same decomposition. If elow < ehigh for different δ’s
during the training, F-Principle holds; otherwise, it is falsified. Next, we introduce the
experimental procedure.

Step One: Training. Train the DNN by the original dataset {(xi,yi)}
n−1
i=0 , such as MNIST or

CIFAR10. xi is an image vector, yi is a one-hot vector.

Step Two: Filtering. The low frequency part can be derived by

ylow,δ
i =

1

Ci

n−1

∑
j=0

yjG
δ(xi−xj), (4.7)

where Ci=∑
n−1
j=0 Gδ(xi−xj) is a normalization factor and

Gδ(xi−xj)=exp
(

−|xi−xj|
2/(2δ)

)

. (4.8)

The high frequency part can be derived by y
high,δ
i ,yi−ylow,δ

i . We also compute hlow,δ
i and

h
high,δ
i for each DNN output hi.

Step Three: Examination. To quantify the convergence of hlow,δ and hhigh,δ, we compute
the relative error elow and ehigh at each training epoch through Eq. (4.6).

1754 Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767

4.2 DNNs with various settings

With the filtering method, we show the F-Principle in the DNN training process of real
datasets for commonly used large networks. For MNIST, we use a fully-connected tanh-
DNN (no softmax) with MSE loss; for CIFAR10, we use cross-entropy loss and two
structures, one is small ReLU-CNN network, i.e., two convolutional layers, followed
by a fully-connected multi-layer neural network with a softmax; the other is VGG16
[28] equipped with a 1024 fully-connected layer. These three structures are denoted as
“DNN”, “CNN” and “VGG” in Fig. 3, respectively. All are trained by SGD from scratch.

We scan a large range of δ for both datasets. As an example, results of each dataset for
several δ’s are shown in Fig. 3, respectively. Red color indicates small relative error. In all
cases, the relative error of the low-frequency part, i.e., elow, decreases (turns red) much
faster than that of the high-frequency part, i.e., ehigh. Therefore, as analyzed above, the
low-frequency part converges faster than the high-frequency part. We also remark that,
based on the above results on cross-entropy loss, the F-Principle is not limited to MSE
loss, which possesses a natural Fourier domain interpretation by the Parseval’s theorem.
Note that the above results holds for both SGD and GD.

Figure 3: F-Principle in real datasets. elow and ehigh indicated by color against training epoch. For MNIST,

we use a fully-connected tanh-DNN with widths 784-400-200-10 and MSE loss; for CIFAR10, we use cross-
entropy loss and a ReLU-CNN, which consists of one convolution layer of 3×3×32, a max pooling of 2×2, one
convolution layer of 3×3×64, a max pooling of 2×2, followed by a fully-connected DNN with widths 400-10
and the output layer of the network is equipped with a softmax. The learning rate for MNIST and CIFAR10 is
0.015 and 0.003, respectively, with batch size 10000. For VGG16, the learning rate is 10−5 with batch size 500.
All networks are trained by Adam optimizer [20].

Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767 1755

5 F-Principle in solving differential equation

Recently, DNN-based approaches have been actively explored for a variety of scien-
tific computing problems, e.g., solving high-dimensional partial differential equations
[8, 13, 14, 17, 19, 30, 32] and molecular dynamics (MD) simulations [15]. However, the be-
haviors of DNNs applied to these problems are not well-understood. To facilitate the
designs and applications of DNN-based schemes, it is important to characterize the dif-
ference between DNNs and conventional numerical schemes on various scientific com-
puting problems. In this section, focusing on solving Poisson’s equation, which has
broad applications in mechanical engineering and theoretical physics [12], we highlight
a stark difference between a DNN-based solver and the Jacobi method during the train-
ing/iteration, which can be explained by the F-Principle.

In this section, we consider a 1-d Poisson’s equation:

−∆u(x)= g(x), x∈Ω, (−1,1), (5.1)

u(−1)=u(1)=0. (5.2)

5.1 Central difference scheme and Jacobi method

Before we show the difference between a DNN-based solver and the Jacobi method, we
illustrate the procedure of the Jacobi method.

[−1,1] is uniformly discretized into n+1 points with grid size h=2/n. The Poisson’s
equation in Eq. (5.1) can be solved by the central difference scheme,

−∆ui=−
ui+1−2ui+ui−1

(δx)2
= g(xi), i=1,2,··· ,n, (5.3)

resulting a linear system
Au= g, (5.4)

where

A=















2 −1 0 0 ··· 0
−1 2 −1 0 ··· 0
0 −1 2 −1 ··· 0
...

... ···
...

0 0 ··· 0 −1 2















(n−1)×(n−1)

, (5.5)

u=















u1

u2
...

un−2

un−1















, g=(δx)2















g1

g2
...

gn−2

gn−1















, xi=2
i

n
. (5.6)

1756 Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767

A class of methods to solve this linear system is iterative schemes, for example, the Jacobi
method. Let A= D−L−U, where D is the diagonal of A, and L and U are the strictly
lower and upper triangular parts of −A, respectively. Then, we obtain

u=D−1(L+U)u+D−1g. (5.7)

At step t∈N, the Jacobi iteration reads as

ut+1=D−1(L+U)ut+D−1g. (5.8)

We perform the standard error analysis of the above iteration process. Denote u∗ as the
true value obtained by directly performing inverse of A in Eq. (5.4). The error at step t+1
is et+1=ut+1−u∗. Then, et+1=RJe

t, where RJ =D−1(L+U). The converging speed of et

is determined by the eigenvalues of RJ , that is,

λk =λk(RJ)=cos
kπ

n
, k=1,2,··· ,n−1, (5.9)

and the corresponding eigenvector vk’s entry is

vk,i =sin
ikπ

n
, i=1,2,··· ,n−1. (5.10)

So we can write

et =
n−1

∑
k=1

αt
kvk, (5.11)

where αt
k can be understood as the magnitude of et in the direction of vk. Then,

et+1=
n−1

∑
k=1

αt
kRJvk =

n−1

∑
k=1

αt
kλkvk, (5.12)

αt+1
k =λkαt

k.

Therefore, the converging rate of et in the direction of vk is controlled by λk. Since

cos
kπ

n
=−cos

(n−k)π

n
, (5.13)

the frequencies k and (n−k) are closely related and converge with the same rate. Con-
sider the frequency k<n/2, λk is larger for lower frequency. Therefore, lower frequency
converges slower in the Jacobi method.

Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767 1757

5.2 Numerical experiments

We consider the example with g(x)=sin(x)+4sin(4x)−8sin(8x)+16sin(24x) which has
analytic solution uref(x) = g0(x)+c1x+c0, where g0 = sin(x)+sin(4x)/4−sin(8x)/8+
sin(24x)/36, c1=(g0(−1)−g0(1))/2 and c0=−(g0(−1)+g0(1))/2. 1001 training samples
{xi}

n
i=0 are evenly spaced with grid size δx in [0,1]. Here, we use the DNN output, h(x;θ),

to fit uref(x) (Fig. 4(a)). A DNN-based scheme is proposed by considering the following
empirical loss function [11],

Iemp=
n−1

∑
i=1

(

1

2
|∇xh(xi)|

2−g(xi)h(xi)

)

δx+β
(

h(x0)
2+h(xn)

2
)

. (5.14)

The second term in Iemp(h) is a penalty, with constant β, arising from the Dirichlet bound-
ary condition (5.2). After training, the DNN output well matches the analytical solution
uref. Focusing on the convergence of three peaks (inset of Fig. 4(a)) in the Fourier trans-
form of uref, as shown in Fig. 4(b), low frequencies converge faster than high frequen-
cies as predicted by the F-Principle. For comparison, we also use the Jacobi method to
solve problem (5.1). High frequencies converge faster in the Jacobi method, as shown in
Fig. 4(c).

As a demonstration, we further propose that DNN can be combined with conven-
tional numerical schemes to accelerate the convergence of low frequencies for compu-
tational problems. First, we solve the Poisson’s equation in Eq. (5.1) by DNN with M
optimization steps (or epochs), which needs to be chosen carefully, to get a good initial
guess in the sense that this solution has already learned the low frequencies (large eigen-
values) part. Then, we use the Jacobi method with the new initial data for the further
iterations. We use ‖h−uref‖∞,maxx∈Ω |h(x)−uref(x)| to quantify the learning result. As
shown by green stars in Fig. 4(d), ‖h−uref‖∞ fluctuates after some running time using
DNN only. Dashed lines indicate the evolution of the Jacobi method with initial data set

Figure 4: Poisson’s equation. (a) uref(x). Inset: |ûref(k)| as a function of frequency. Frequencies peaks are
marked with black dots. (b,c) ∆F(k) computed on the inputs of training data at different epochs for the
selected frequencies for DNN (b) and Jacobi (c). (d) ‖h−uref‖∞ at different running time. Green stars indicate
‖h−uref‖∞ using DNN alone. The dashed lines indicate ‖h−uref‖∞ for the Jacobi method with different colors
indicating initialization by different timing of DNN training. We use a DNN with widths 1-4000-500-400-1 and
full batch training by Adam optimizer [20]. The learning rate is 0.0005. β is 10. The parameters of the DNN
are initialized following a Gaussian distribution with mean 0 and standard deviation 0.02.

1758 Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767

to the DNN output at the corresponding steps. If M is too small (stop too early) (left
dashed line), which is equivalent to only using Jacobi, it would take long time to converge to
a small error, because low frequencies converges slowly, yet. If M is too big (stop too late)
(right dashed line), which is equivalent to using DNN only, much time would be wasted for
the slow convergence of high frequencies. A proper choice of M is indicated by the initial
point of orange dashed line, in which low frequencies are quickly captured by the DNN,
followed by fast convergence in high frequencies of the Jacobi method.

This example illustrates a cautionary tale that, although DNNs has clear advantage,
using DNNs alone may not be the best option because of its limitation of slow conver-
gence at high frequencies. Taking advantage of both DNNs and conventional methods to
design faster schemes could be a promising direction in scientific computing problems.

6 A preliminary theoretical understanding

The key insight of the F-Principle is that the regularity of DNN converts into the decay
rate of a loss function in the frequency domain. For an intuitive understanding of this
key insight, we present theories under an idealized setting, which connect the smooth-
ness/regularity of the activation function with different gradient and convergence pri-
orities in frequency domain. Following the idea in this paper, a subsequent theoretical
work [23] provides a rigorous mathematical study of the F-Principle at different frequen-
cies for general DNNs (e.g., multiple hidden layers, different activation functions, high-
dimensional inputs).

The activation function we consider is σ(x)= tanh(x).

σ(x)= tanh(x)=
ex−e−x

ex+e−x
, x∈R.

For a DNN of one hidden layer with m nodes, 1-d input x and 1-d output:

h(x)=
m

∑
j=1

ajσ(wjx+bj), aj,wj,bj∈R, (6.1)

where wj, aj, and bj are called parameters, in particular, wj and aj are called weights, and
bj is also known as a bias. In the sequel, we will also use the notation θ = {θlj} with

θ1j = aj, θ2j =wj, and θlj = bj, j= 1,··· ,m. Note that σ̂(k)=− iπ
sinh(πk/2) where the Fourier

transformation and its inverse transformation are defined as follows:

f̂ (k)=
∫ +∞

−∞
f (x)e−ikx dx, f (x)=

1

2π

∫ +∞

−∞
f̂ (k)eikx dk.

The Fourier transform of σ(wjx+bj) with wj,bj ∈R, j=1,··· ,m reads as

̂σ(wj ·+bj)(k)=
2πi

|wj|
exp

(ibjk

wj

) 1

exp(− πk
2wj

)−exp(πk
2wj

)
. (6.2)

Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767 1759

Thus

ĥ(k)=
m

∑
j=1

2πaji

|wj|
exp

(ibjk

wj

) 1

exp(− πk
2wj

)−exp(πk
2wj

)
. (6.3)

We define the amplitude deviation between DNN output and the target function f (x) at
frequency k as

D(k), ĥ(k)− f̂ (k).

Write D(k) as D(k)=A(k)eiφ(k), where A(k)∈ [0,+∞) and φ(k)∈R are the amplitude and

phase of D(k), respectively. The loss at frequency k is L(k)= 1
2 |D(k)|2, where |·| denotes

the norm of a complex number. The total loss function is defined as: L=
∫ +∞

−∞
L(k)dk. Note

that according to Parseval’s theorem, this loss function in the Fourier domain is equal to

the commonly used loss of mean squared error, that is, L=
∫ +∞

−∞
1
2(h(x)− f (x))2 dx. For

readers’ reference, we list the partial derivatives of L(k) with respect to parameters

∂L(k)

∂aj
=

2π

wj
sin
(bjk

wj
−φ(k)

)

E0, (6.4)

∂L(k)

∂wj
=

[

sin
(bjk

wj
−φ(k)

)

(

π2ajk

w3
j

E1−
2πaj

w2
j

)

−
2πajbjk

w3
j

cos
(bjk

wj
−φ(k)

)

]

E0, (6.5)

∂L(k)

∂bj
=

2πajbjk

w2
j

cos
(bjk

wj
−φ(k)

)

E0, (6.6)

where

E0=
sgn(wj)A(k)

exp(πk
2wj

)−exp(− πk
2wj

)
,

E1=
exp(πk

2wj
)+exp(− πk

2wj
)

exp(πk
2wj

)−exp(− πk
2wj

)
.

The descent increment at any direction, say, with respect to parameter θlj, is

∂L

∂θlj
=
∫ +∞

−∞

∂L(k)

∂θlj
dk. (6.7)

The absolute contribution from frequency k to this total amount at θlj is

∣

∣

∣

∣

∂L(k)

∂θlj

∣

∣

∣

∣

≈A(k)exp
(

−|πk/2wj |
)

Flj(θj,k), (6.8)

where θj ,{wj,bj,aj}, θlj ∈ θj, Flj(θj,k) is a function with respect to θj and k, which can be
found in one of Eqs. (6.4), (6.5), (6.6).

1760 Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767

When the component at frequency k where ĥ(k) is not close enough to f̂ (k),
exp

(

−|πk/2wj|
)

would dominate Glj(θj,k) for a small wj. Through the above framework
of analysis, we have the following theorem. Define

W=(w1,w2,··· ,wm)
T ∈R

m. (6.9)

Theorem 6.1. Consider a one hidden layer DNN with activation function σ(x) = tanhx. For
any frequencies k1 and k2 such that | f̂ (k1)|>0, | f̂ (k2)|>0, and |k2|>|k1|>0, there exist positive
constants c and C such that for sufficiently small δ, we have

µ
({

W :
∣

∣

∣

∂L(k1)
∂θl j

∣

∣

∣
>

∣

∣

∣

∂L(k2)
∂θl j

∣

∣

∣
for all l, j

}

∩Bδ

)

µ(Bδ)
≥1−Cexp(−c/δ), (6.10)

where Bδ⊂R
m is a ball with radius δ centered at the origin and µ(·) is the Lebesgue measure.

We remark that c and C depend on k1, k2, | f̂ (k1)|, | f̂ (k2)|, sup|ai|, sup|bi|, and m.

Proof. To prove the statement, it is sufficient to show that µ(Slj,δ)/µ(Bδ)≤Cexp(−c/δ)
for each l, j, where

Slj,δ :=

{

W∈Bδ :

∣

∣

∣

∣

∂L(k1)

∂θlj

∣

∣

∣

∣

≤

∣

∣

∣

∣

∂L(k2)

∂θlj

∣

∣

∣

∣

}

. (6.11)

We prove this for S1j,δ, that is, θlj = aj. The proofs for θlj =wj and bj are similar. Without
loss of generality, we assume that k1,k2 > 0, bj > 0, and wj 6= 0, j= 1,··· ,m. According to

Eq. (6.4), the inequality | ∂L(k1)
∂aj

|≤ | ∂L(k2)
∂aj

| is equivalent to

A(k2)

A(k1)

∣

∣

∣

∣

∣

exp(πk1
2wj

)−exp(−πk1
2wj

)

exp(πk2
2wj

)−exp(−πk2
2wj

)

∣

∣

∣

∣

∣

·
∣

∣

∣
sin
(bjk2

wj
−φ(k2)

)∣

∣

∣

≥
∣

∣

∣
sin
(bjk1

wj
−φ(k1)

)∣

∣

∣
. (6.12)

Note that |ĥ(k)|≤C∑
m
j=1

|aj|

|wj|
exp(− πk

2|wj|
) for k>0. Thus

lim
W→0

ĥ(k)=0 and lim
W→0

D(k)=− f̂ (k). (6.13)

Therefore,
lim

W→0
A(k)= | f̂ (k)| and lim

W→0
φ(k)=π+arg(f̂ (k)). (6.14)

For W∈Bδ with sufficiently small δ, A(k1)>
1
2 | f̂ (k1)|>0 and A(k2)<2| f̂ (k2)|. Also note

that |sin(
bjk2

wj
−φ(k2))|≤1 and that for sufficiently small δ,

∣

∣

∣

∣

∣

exp(πk1
2wj

)−exp(−πk1
2wj

)

exp(πk2
2wj

)−exp(−πk2
2wj

)

∣

∣

∣

∣

∣

≤2exp
(−π(k2−k1)

2|wj|

)

. (6.15)

Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767 1761

Thus, inequality (6.12) implies that

∣

∣

∣
sin
(bjk1

wj
−φ(k1)

)∣

∣

∣
≤

8| f̂ (k2)|

| f̂ (k1)|
exp

(

−
π(k2−k1)

2|wj|

)

. (6.16)

Noticing that 2
π |x|≤ |sinx| (|x|≤ π

2) and Eq. (6.14), we have for W∈Slj,δ, for some q∈Z,

∣

∣

∣

bik1

wi
−arg(f̂ (k1))−qπ

∣

∣

∣≤
8π| f̂ (k2)|

| f̂ (k1)|
exp

(

−
π(k2−k1)

2δ

)

, (6.17)

that is,

−c1exp(−c2/δ)+qπ+arg(f̂ (k1))

≤
bik1

wi
≤ c1exp(−c2/δ)+qπ+arg(f̂ (k1)), (6.18)

where c1=
8π| f̂ (k2)|

| f̂ (k1)|
and c2=π(k2−k1). Define I := I+∪ I− where

I+ :={wj >0 : W∈S1j,δ}, I− :={wj <0 : W∈S1j,δ}. (6.19)

For wj>0, we have for some q∈Z,

0<
bjk1

c1exp(−c2/δ)+qπ+arg(f̂ (k1))

≤wj≤
bjk1

−c1exp(−c2/δ)+qπ+arg(f̂ (k1))
. (6.20)

Since W∈Bδ and c1exp(−c2/δ)+arg(f̂ (k1))≤2π, we have
bjk1

2π+qπ ≤wj≤δ. Then Eq. (6.20)

only holds for some large q, more precisely, q≥ q0 :=
bjk

πδ −2. Thus we obtain the estimate
for the (one-dimensional) Lebesgue measure of I+

µ(I+)≤
∞

∑
q=q0

∣

∣

∣

∣

∣

bjk1

−c1exp(−c2/δ)+qπ+arg(f̂ (k1))

−
bjk1

c1exp(−c2/δ)+qπ+arg(f̂ (k1))

∣

∣

∣

∣

∣

≤2|bj|k1c1exp(−c2/δ)

·
∞

∑
q=q0

1

(qπ+arg(f̂ (k1)))2−(c1exp(−c2/δ))2

≤Cexp(−c/δ). (6.21)

1762 Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767

The similar estimate holds for µ(I−), and hence µ(I)≤ Cexp(−c/δ). For W ∈ Bδ, the
(m−1) dimensional vector (w1,··· ,wj−1,wj+1,··· ,wm)T is in a ball with radius δ in R

m−1.
Therefore, we final arrive at the desired estimate

µ(S1j,δ)

µ(Bδ)
≤

µ(I)ωm−1δm−1

ωmδm
≤Cexp(−c/δ), (6.22)

where ωm is the volume of a unit ball in R
m.

Theorem 6.1 indicates that for any two non-converged frequencies, with small
weights, the lower-frequency gradient exponentially dominates over the higher-
frequency ones. Due to Parseval’s theorem, the MSE loss in the spatial domain is equiva-
lent to the L2 loss in the Fourier domain. To intuitively understand the higher decay rate
of a lower-frequency loss function, we consider the training in the Fourier domain with
loss function of only two non-zero frequencies.

Theorem 6.2. Considering a DNN of one hidden layer with activation function σ(x)=tanh(x).
Suppose the target function has only two non-zero frequencies k1 and k2, that is, | f̂ (k1)|> 0,
| f̂ (k2)|> 0, |k2|> |k1|> 0, and | f̂ (k)| = 0 for k 6= k1,k2. Consider the loss function of L =
L(k1)+L(k2) with gradient descent training. Denote

S=

{

∂L(k1)

∂t
≤0,

∂L(k1)

∂t
≤

∂L(k2)

∂t

}

,

that is, L(k1) decreases faster than L(k2). There exist positive constants c and C such that for
sufficiently small δ, we have

µ({W :S holds}∩Bδ)

µ(Bδ)
≥1−Cexp(−c/δ),

where Bδ⊂R
m is a ball with radius δ centered at the origin and µ(·) is the Lebesgue measure.

Proof. By gradient descent algorithm, we obtain

∂L(k1)

∂t
=∑

l,j

∂L(k1)

∂θlj

∂θlj

∂t

=−∑
l,j

∂L(k1)

∂θlj

∂(L(k1)+L(k2))

∂θlj

=−∑
l,j

(

∂L(k1)

∂θlj

)2

−∑
l,j

∂L(k1)

∂θlj

∂L(k2)

∂θlj
,

∂L(k2)

∂t
=−∑

l,j

(

∂L(k2)

∂θlj

)2

−∑
l,j

∂L(k1)

∂θlj

∂L(k2)

∂θlj
,

Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767 1763

and
∂L

∂t
=

∂(L(k1)+L(k2))

∂t
=−∑

l,j

(

∂L(k1)

∂θlj
+

∂L(k2)

∂θlj

)2

≤0. (6.23)

To obtain

0>
∂L(k1)

∂t
−

∂L(k2)

∂t
=−∑

l,j

[

(

∂L(k1)

∂θlj

)2

−

(

∂L(k2)

∂θlj

)2
]

, (6.24)

it is sufficient to have
∣

∣

∣

∣

∂L(k1)

∂θlj

∣

∣

∣

∣

>

∣

∣

∣

∣

∂L(k2)

∂θlj

∣

∣

∣

∣

. (6.25)

Eqs. (6.23), (6.24) also yield to
∂L(k1)

∂t
<0.

Therefore, Eq. (6.25) is a sufficient condition for S . Based on Theorem 6.1, we have proved
Theorem 6.2.

7 Discussions

7.1 Generalization

DNNs often generalize well for real problems [37] but poorly for problems like fitting a
parity function [25, 27] despite excellent training accuracy for all problems. Understand-
ing the differences between above two types of problems, i.e., good and bad generaliza-
tion performance of DNN, is critical. In the following, we show a qualitative difference
between these two types of problems through Fourier analysis and use the F-Principle to
provide an explanation different generalization performances of DNNs.

For MNIST/CIFAR10, we examine

ŷtotal,k=
1

ntotal

ntotal−1

∑
i=0

yi exp(−i2πk·xi), (7.1)

where {(xi,yi)}
ntotal−1
i=0 consists of both the training and test datasets with certain selected

output component, at different directions of k in the Fourier space. We find that ŷtotal,k

concentrates on the low frequencies along those examined directions. For illustration,
ŷtotal,k’s along the first principle component are shown by green lines in Fig. 5(a, b) for
MNIST/CIFAR10, respectively. When only the training dataset is used, ŷtrain,k well over-
laps with ŷtotal,k at the dominant low frequencies.

For the parity function f (x) = ∏
d
j=1 xj defined on Ω = {−1,1}d, its Fourier trans-

form is f̂ (k) = 1
2d ∑x∈Ω ∏

d
j=1 xje

−i2πk·x = (−i)d ∏
d
j=1sin2πkj . Clearly, for k ∈ [− 1

4 , 1
4]

d, the

power of the parity function concentrates at k ∈ {− 1
4 , 1

4}
d and vanishes as k → 0, as

illustrated in Fig. 5(c) for the direction of 1d. Given a randomly sampled training

1764 Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767

Figure 5: Fourier analysis for different generalization ability. The plot is the amplitude of the Fourier coefficient
against frequency k. The red dots are for the training dataset, the green line is for the whole dataset, and the
blue dashed line is for an output of well-trained DNN on the input of the whole dataset. For (c), d=10. The
training data is 200 randomly selected points. The settings of (a) and (b) are the same as the ones in Fig. 2. For
(c), we use a tanh-DNN with widths 10-500-100-1, learning rate 0.0005 under full batch-size training by Adam
optimizer. The parameters of the DNN are initialized by a Gaussian distribution with mean 0 and standard
deviation 0.05.

dataset S ⊂ Ω with s points, the nonuniform Fourier transform on S is computed as
f̂S(k)=

1
s ∑x∈S ∏

d
j=1 xje

−i2πk·x. As shown in Fig. 5(c), f̂ (k) and f̂S(k) significantly differ at
low frequencies.

By experiments, the generalization ability of DNNs can be well reflected by the
Fourier analysis. For the MNIST/CIFAR10, we observed the Fourier transform of the

output of a well-trained DNN on {xi}
ntotal−1
i=0 faithfully recovers the dominant low fre-

quencies, as illustrated in Fig. 5(a) and 5(b), respectively, indicating a good generalization
performance as observed in experiments. However, for the parity function, we observed
that the Fourier transform of the output of a well-trained DNN on {xi}i∈S significantly
deviates from f̂ (k) at almost all frequencies, as illustrated in Fig. 5(c), indicating a bad
generalization performance as observed in experiments.

The F-Principle implicates that among all the functions that can fit the training data,
a DNN is implicitly biased during the training towards a function with more power at
low frequencies. If the target function has significant high-frequency components, in-
sufficient training samples will lead to artificial low frequencies in training dataset (see
red line in Fig. 5(c)), which is the well-known aliasing effect. Based on the F-Principle,
as demonstrated in Fig. 5(c), these artificial low frequency components will be first cap-
tured to explain the training samples, whereas the high frequency components will be
compromised by DNN. For MNIST/CIFAR10, since the power of high frequencies is
much smaller than that of low frequencies, artificial low frequencies caused by aliasing
can be neglected. To conclude, the distribution of power in Fourier domain of above two
types of problems exhibits significant differences, which result in different generalization
performances of DNNs according to the F-Principle.

Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767 1765

7.2 Related work

There are different approaches attempting to explain why DNNs often generalize well.
For example, generalization error is related to various complexity measures [2, 10, 24],
local properties (sharpness/flatness) of loss functions at minima [18,33], stability of opti-
mization algorithms [16], and implicit bias of the training process [1,29,34]. On the other
hand, several works focus on the failure of DNNs [25,27], e.g., fitting the parity function,
in which a well-trained DNN possesses no generalization ability. We propose that the
Fourier analysis can provide insights into both success and failure of DNNs.

F-Principle was verified in [26, 34] through simple synthetic data and not very deep
networks. In the revised version, [26] examines the F-Principle in the MNIST dataset.
However, they add noise to MNIST, which contaminates the labels and damages the
structure of real data. They only examine not very deep (6-layer) fully connected ReLU
network with MSE loss, while cross-entropy loss is widely used. This paper verified that
F-Principle holds in the training process of MNIST and CIFAR10, both CNN and fully
connected networks, very deep networks (VGG16) and various loss functions, e.g., MSE
Loss, cross-entropy loss and variational loss function. In the aspect of theoretical study,
based on the key mechanism found by the theoretical study in this paper, [23] shows a
rigorous proof of the F-Principle for general DNNs. The theoretical study of the gradient
of tanh(x) in the Fourier domain is adopted by [26], in which they generalize the analysis
to ReLU and show similar results. A subsequent work [9] demonstrates the F-Principle
through a continuous viewpoint, that is, the dynamics of the neural network is governed
by an integral equation and illustrate the F-Principle by a 1d pseudo-spectrum method.

In the aspect of application, based on the study of the F-Principle in this paper, several
algorithms are developed. For example, Blind et al. [3] explicitly impose higher priority
for high frequencies in the loss function to significantly accelerate the simulation of fluid
dynamics through DNN approach; Cai et al. [6] design DNN-based algorithms to solve
high-frequency problems by shifting high frequencies to lower ones.

Note that this paper includes two arxiv papers [35, 36].

Acknowledgments

We thank Prof. Weinan E (Princeton) and Prof. David W. McLaughlin (NYU) for help-
ful discussions. This work is sponsored by National Key R&D Program of China
(2019YFA0709503) (Z. X.), Shanghai Sailing Program (Z. X.), Natural Science Foundation
of Shanghai (20ZR1429000) (Z. X.), NSF Grant No.DMS-1638352 (Y. Z.) and the Ky Fan
and Yu-Fen Fan Membership Fund (Y. Z.).

References

[1] Devansh Arpit, Stanislaw Jastrzbski, Nicolas Ballas, David Krueger, Emmanuel Bengio,
Maxinder S Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, et al.

1766 Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767

A closer look at memorization in deep networks. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pages 233–242, 2017.

[2] Peter L Bartlett, Vitaly Maiorov, and Ron Meir. Almost linear vc dimension bounds for
piecewise polynomial networks. In Advances in Neural Information Processing Systems, pages
190–196, 1999.

[3] Simon Biland, Vinicius C Azevedo, Byungsoo Kim, and Barbara Solenthaler. Frequency-
aware reconstruction of fluid simulations with generative networks. arXiv preprint
arXiv:1912.08776, 2019.

[4] Ronald Newbold Bracewell and Ronald N Bracewell. The Fourier transform and its applica-
tions, volume 31999. McGraw-Hill New York, 1986.

[5] James H Bramble, Joseph E Pasciak, Jun Ping Wang, and Jinchao Xu. Convergence esti-
mates for multigrid algorithms without regularity assumptions. Mathematics of Computation,
57(195):23–45, 1991.

[6] Wei Cai, Xiaoguang Li, and Lizuo Liu. A phase shift deep neural network for high frequency
wave equations in inhomogeneous media. Arxiv preprint, arXiv:1909.11759, 2019.

[7] Jingrun Chen and Carlos J Garcı́a-Cervera. An efficient multigrid strategy for large-scale
molecular mechanics optimization. Journal of Computational Physics, 342:29–42, 2017.

[8] Weinan E, Jiequn Han, and Arnulf Jentzen. Deep learning-based numerical methods for
high-dimensional parabolic partial differential equations and backward stochastic differen-
tial equations. Communications in Mathematics and Statistics, 5(4):349–380, 2017.

[9] Weinan E, Chao Ma, and Lei Wu. Machine learning from a continuous viewpoint. arXiv
preprint arXiv:1912.12777, 2019.

[10] Weinan E, Chao Ma, and Lei Wu. A priori estimates of the population risk for two-layer
neural networks. Communications in Mathematical Sciences, 17:1407–1425, 2019.

[11] Weinan E and Bing Yu. The deep ritz method: A deep learning-based numerical algorithm
for solving variational problems. Communications in Mathematics and Statistics, 6(1):1–12,
2018.

[12] Lawrence C Evans. Partial differential equations. 2010.
[13] Yuwei Fan, Lin Lin, Lexing Ying, and Leonardo Zepeda-Núnez. A multiscale neural net-

work based on hierarchical matrices. Multiscale Modeling & Simulation, 17(4):1189–1213,2019.
[14] Jiequn Han, Chao Ma, Zheng Ma, and E Weinan. Uniformly accurate machine learning-

based hydrodynamic models for kinetic equations. Proceedings of the National Academy of
Sciences, 116(44):21983–21991, 2019.

[15] Jiequn Han, Linfeng Zhang, Roberto Car, et al. Deep potential: A general representation of
a many-body potential energy surface. Communications in Computational Physics, 23(3), 2018.

[16] Moritz Hardt, Benjamin Recht, and Yoram Singer. Train faster, generalize better: Stability of
stochastic gradient descent. arXiv preprint arXiv:1509.01240, 2015.

[17] Juncai He, Lin Li, Jinchao Xu, and Chunyue Zheng. Relu deep neural networks and linear
finite elements. Journal of Computational Mathematics, 2019.

[18] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping
Tak Peter Tang. On large-batch training for deep learning: Generalization gap and sharp
minima. arXiv preprint arXiv:1609.04836, 2016.

[19] Yuehaw Khoo and Lexing Ying. Switchnet: a neural network model for forward and inverse
scattering problems. SIAM Journal on Scientific Computing, 41(5):A3182–A3201, 2019.

[20] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[21] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for ad-

Z.-Q. J. Xu et al. / Commun. Comput. Phys., 28 (2020), pp. 1746-1767 1767

vanced research). URL http://www. cs. toronto. edu/kriz/cifar. html, 2010.
[22] Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/,

1998.
[23] Tao Luo, Zheng Ma, Zhi-Qin John Xu, and Yaoyu Zhang. Theory of the frequency principle

for general deep neural networks. arXiv preprint arXiv:1906.09235, 2019.
[24] Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring

generalization in deep learning. In Advances in Neural Information Processing Systems, pages
5947–5956, 2017.

[25] Maxwell Nye and Andrew Saxe. Are efficient deep representations learnable? 2018.
[26] Nasim Rahaman, Devansh Arpit, Aristide Baratin, Felix Draxler, Min Lin, Fred A Ham-

precht, Yoshua Bengio, and Aaron Courville. On the spectral bias of deep neural networks.
International Conference on Machine Learning, 2019.

[27] Shai Shalev-Shwartz, Ohad Shamir, and Shaked Shammah. Failures of gradient-based deep
learning. arXiv preprint arXiv:1703.07950, 2017.

[28] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

[29] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro.
The implicit bias of gradient descent on separable data. Journal of Machine Learning Research,
19(70), 2018.

[30] Carlos Michelen Strofer, Jin-Long Wu, Heng Xiao, and Eric Paterson. Data-driven, physics-
based feature extraction from fluid flow fields using convolutional neural networks. Com-
munications in Computational Physics, 25(3):625–650, 2019.

[31] Ulrich Trottenberg, Cornelius W Oosterlee, and Anton Schuller. Multigrid. Elsevier, 2000.
[32] E Weinan, Chao Ma, and Jianchun Wang. Model reduction with memory and the machine

learning of dynamical systems. Communications in Computational Physics, 25(4):947–962,2018.
[33] Lei Wu, Zhanxing Zhu, and Weinan E. Towards understanding generalization of deep learn-

ing: Perspective of loss landscapes. arXiv preprint arXiv:1706.10239, 2017.
[34] Zhi-Qin J Xu, Yaoyu Zhang, and Yanyang Xiao. Training behavior of deep neural network in

frequency domain. International Conference on Neural Information Processing, pages 264–274,
2019.

[35] Zhi-Qin John Xu. Frequency principle in deep learning with general loss functions and its
potential application. arXiv preprint arXiv:1811.10146, 2018.

[36] Zhiqin John Xu. Understanding training and generalization in deep learning by fourier
analysis. arXiv preprint arXiv:1808.04295, 2018.

[37] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Under-
standing deep learning requires rethinking generalization. The International Conference on
Learning Representations, 2017.

