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A Linear Frequency Principle Model to Understand the Absence of Overfitting in
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Why heavily parameterized neural networks (NNs) do not overfit the data is an important long standing open
question. We propose a phenomenological model of the NN training to explain this non-overfitting puzzle. Our
linear frequency principle (LFP) model accounts for a key dynamical feature of NNs: they learn low frequencies
first, irrespective of microscopic details. Theory based on our LFP model shows that low frequency dominance of
target functions is the key condition for the non-overfitting of NNs and is verified by experiments. Furthermore,
through an ideal two-layer NN, we unravel how detailed microscopic NN training dynamics statistically gives rise
to an LFP model with quantitative prediction power.
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Deep learning, a subfield of machine learning
achieving huge success in industrial applications, is ex-
periencing a surge in many areas of sciences including
physics.[1−7] A typical well-solved problem is super-
vised learning, where the machine learns a mapping
from input 𝑥 ∈ R𝑑 to output 𝑦 ∈ R𝑑o from a training
dataset 𝑆 = {(𝑥𝑖,𝑦𝑖)}𝑛𝑖=1. The machine is realized by
a deep neural network (DNN) of proper depth 𝐿:

𝑓𝜃(𝑥) = 𝑊 [𝐿]𝜎∘[· · ·𝑊 [2]𝜎∘(𝑊 [1]𝑥+𝑏[1])+· · ·]+𝑏[𝐿],

where 𝜃 = {𝑊 [𝑙], 𝑏[𝑙]}𝐿𝑙=1, 𝑊 [𝑙] are weight matrices,
𝑏[𝑙] are bias vectors, and 𝜎 ∘ (· · ·) is an element-wise
nonlinear activation function. Parameters 𝜃 are up-
dated during the training by minimizing an empiri-
cal risk/loss function characterizing the difference be-
tween the DNN outputs and the correct outputs, e.g.,
𝑅𝑆(𝜃) =

∑︀𝑛
𝑖=1 ||𝑓𝜃(𝑥𝑖) − 𝑦𝑖||2/2𝑛 for the loss of train-

ing dataset 𝑆, with gradient-based algorithms. Due
to the highly nonlinear nature of the neural network
(NN) model, many key theoretical questions raised
by Leo Breiman decades ago remain unanswered.[8,9]
This work focuses on one of them: why heavily pa-
rameterized neural networks do not overfit the data,
which is further backed by recent experimental works
in large datasets and deep networks.[10] Note that,
establishing a good theoretical understanding of this
non-overfitting puzzle has become more and more cru-
cial for applications of DNNs because modern DNN
architectures with tons of parameters, e.g., ∼108 for
VGG19,[11] ∼1011 for GPT-3,[12] indeed achieve huge
success in practice. However, theoretical understand-
ing to this puzzle is not obvious at all, because it con-
tradicts the doctrine in physics and statistical learn-

ing theory implied by von Neumann’s famous quote
“with four parameters I can fit an elephant”.[13] Exist-
ing theories based on idealized models of DNNs, e.g.,
deep linear network,[14−16] committee machine,[17,18]
spin glass model,[19] mean-field model,[20−23] neural
tangent kernel,[24,25] which emphasize on fully rigor-
ous mathematical proofs, have difficulties in providing
a satisfactory explanation.[9]

The training process of NN under gradient flow
can be viewed as collective dynamics of a large group
of interacting neurons/parameters driven by training
data. In analogy to statistical mechanics, there are
microscopic levels of NNs caring about the detailed
dynamics of each component of 𝜃 and macroscopic
level caring about dynamics of statistical quantities
of 𝜃, among which 𝑓𝜃(𝑥) as a function-valued quan-
tity is the most important one. At the macroscopic
level, it was suggested recently that DNNs learn sim-
ple patterns (e.g., certain coarse description or land-
scape of dataset) first.[26−28] Based on the intuition
that low frequency functions, i.e., functions with en-
ergy mainly concentrated at low frequencies, are of
low complexity, Refs. [29–32] quantify the complexity
of 𝑓𝜃(𝑥) by its frequency composition, and demon-
strated the general phenomenon of frequency principle
(F-principle)—NNs often learn low frequencies first.
For example, when a DNN is used to fit data gener-
ated from 1-d target function sin𝑥 + sin(5𝑥), while
sin𝑥 and sin(5𝑥) have the same amplitude, the low
frequency sin𝑥 is first captured, and later the target
as shown in Fig. 1. This phenomenon can be robustly
observed no matter how overparameterized NNs are.
The F-principle has initiated a series of subsequent
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works,[33−36] and inspired the design of DNN-based
algorithms.[37−42]

In this Letter, starting from this key macroscopic
dynamical feature of F-principle, we establish a the-
ory for the non-overfitting puzzle. We propose a linear
frequency principle (LFP) model for the phenomeno-
logical characterization of the F-principle. Based on
the LFP model, we establish a theory which explains
the non-overfitting puzzle, and experimentally test its
qualitative predictions about failures of NNs. Fur-
thermore, through an ideal example of two-layer NN
in the infinite proper width limit, we unravel how mi-
croscopic reality of NN training dynamics statistically
gives rise to an LFP model. Finally, we demonstrate
the quantitative prediction power of the LFP model
through experiments.
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Fig. 1. Illustration of the training process of a DNN.
Black dots are training data sampled from target func-
tion sin𝑥 + sin(5𝑥). Cyan, blue and red curves indicates
𝑓𝜃(𝑡)(𝑥) at training epochs 𝑡 = 0, 2000, 17000, respec-
tively.

The LFP Model. F-principle is “opposite” to com-
mon physical processes with diffusion, in which high
frequency modes dissipate faster than low frequency
ones. To phenomenologically model such a process,
we consider a dynamics in frequency domain, in which
each frequency mode evolves to certain target deter-
mined by training data {𝑥𝑖 ∈ R𝑑, 𝑓*(𝑥𝑖) ∈ R}𝑛𝑖=1 with
a positive rate 𝛾(𝜉) decaying as frequency 𝜉 ∈ R𝑑 in-
creases. In particular, in this study we show that for
a wide two-layer NN, explicit form of 𝛾(𝜉), which is
a linear combination of 1

||𝜉||𝑑+1 and 1
||𝜉||𝑑+3 , can be

derived to accurately predict the NN outputs after
training. Before that, we begin with proposing the
following general model for F-principle,

𝜕𝑡ℎ̂(𝜉, 𝑡) = −𝛾(𝜉)
(︁
ℎ̂𝜌(𝜉, 𝑡) − 𝑓*

𝜌 (𝜉)
)︁
, (1)

where ℎ(𝑥, 𝑡) models 𝑓𝜃(𝑡)(𝑥) with microscopic de-
tails neglected, ˆ(· · ·)(𝜉) =

∫︀
R𝑑(· · ·)(𝑥)𝑒−𝐼𝑥·𝜉𝑑𝑥 is the

Fourier transform. The initial condition is set to
ℎ(𝑥, 0) = ℎini(𝑥), (· · ·)𝜌(𝑥) = (· · ·)(𝑥)𝜌(𝑥); 𝜌(𝑥) is
the data distribution, which can be a continuous func-
tion or a probability function for discrete training data
points, that is, 𝜌(𝑥) =

∑︀𝑛
𝑖=1 𝛿(𝑥 − 𝑥𝑖)/𝑛 with 𝛿(· · ·)

being the dirac delta function, an uncommon part of
this dynamics. Since the steady state requires the
model prediction equal to the target function only
at the empirical training data points, at the steady

state, no explicit constraint is imposed on the unseen
data points, therefore ℎ(𝑥,∞) can drastically deviate
from the target 𝑓*(𝑥) at unseen data points. We call
model (1) Linear frequency principle (LFP) model, in
which “linear” refers to the fact that model (1) is a
linear differential equation in ℎ. For simplicity, we set
𝑢(𝑥, 𝑡) = ℎ(𝑥, 𝑡) − 𝑓*(𝑥) with the LFP model simpli-
fied to 𝜕𝑡�̂�(𝜉, 𝑡) = −𝛾(𝜉)𝑢𝜌(𝜉, 𝑡).

We relate dynamics of model (1) with the dynam-
ics of least square loss, that is, model (1) is a dissi-
pative process with a decreasing loss (in analogy to
energy),

𝑅𝑆 =
1

2

∫︁
𝑢2𝜌𝑑𝑥 =

1

2

∫︁
�̂�𝑢𝜌

*𝑑𝜉, (2)

governed by 𝑑
𝑑𝑡𝑅𝑆 = −

∫︀
𝛾|𝑢𝜌|2𝑑𝜉 < 0. The dis-

sipation of loss at each frequency is governed by
𝜕𝑡(�̂�𝑢𝜌

*/2) = −𝛾|𝑢𝜌|2. More importantly, because
𝛾(𝜉) is a decaying function by F-principle, e.g., 𝛾(𝜉) =

1
||𝜉||𝑑+1 , loss decreases faster over lower frequencies.
This behavior is essential for overcoming the singu-
larity in 𝑢𝜌 as a summation of delta functions. Oth-
erwise, if 𝛾(𝜉) = ||𝜉||2, model (1) becomes a heat-
diffusion-type equation 𝜕𝑡𝑢 = −∆𝑢𝜌 in spatial domain
and is not well-posed for non-differentiable 𝑢𝜌. As
the study of waves by mode decomposition, the coeffi-
cient 𝛾(𝜉) as a function of frequency 𝜉 plays an impor-
tant role in governing the macroscopic phenomenon of
training dynamics. For example, for a 𝛾(𝜉) decaying
with 𝜉, model (1) first learns the landscape or a simple
pattern of the training data, followed by more details
or complex patterns, exemplified by the case in Fig. 1.
However, for a 𝛾(𝜉) increasing with 𝜉, the learning
behavior is opposite. Note that, there are infinite fea-
sible decay functions of 𝛾(𝜉) obeying the F-principle.
In general, power-law decay is relevant to an activa-
tion of singularity in derivatives, e.g., ReLU, whereas
exponential decay is relevant to a smooth activation,
e.g., tanh.

In the following, we further analyze our proposed
LFP model (1) in two folds. First, we show that the
long-time solution of model (1) is equivalent to the so-
lution of an optimization problem, which reveals the
low-frequency bias of the LFP model. Based on the
optimization problem, we obtain a generalization error
estimate for understanding the non-overfitting puzzle.
Second, as an example, we exactly compute the LFP
model for two-layer wide ReLU networks.

Theory for the Non-Overfitting Puzzle. Our LFP
model searches for the fitting of 𝑛 points of 𝑓* in an in-
finite dimensional function space. Clearly, it possesses
infinite steady states (minimizers of 𝐸) that satisfy
ℎ(𝑥𝑖) = 𝑓*(𝑥𝑖) for 𝑖 = 1, . . . , 𝑛. If we arbitrarily pick
one steady state of ℎ, it is likely to generalize poorly,
i.e., ℎ deviates drastically from target 𝑓* on unob-
served positions, resulting in overfitting as commonly
expected from an overparameterized model. However,
given proper ℎini(𝑥) and 𝛾(𝜉), we obtain a unique
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steady state ℎ(𝑥,∞), denoted by ℎ∞(𝑥) for simplic-
ity. Exploiting the linearity of the LFP model, we
derive that ℎ∞(𝑥) satisfies the following constrained
minimization problem:

min
ℎ

∫︁
𝛾(𝜉)−1|ℎ̂(𝜉) − ℎ̂ini(𝜉)|2𝑑𝜉,

s.t. ℎ(𝑥𝑖) = 𝑓*(𝑥𝑖), 𝑖 = 1, . . . , 𝑛.

(3)

Note that solution to this problem may generalize
poorly if ℎini attains any function. For example, if
ℎini attains a “bad” steady state, then solution of the
problem ℎ = ℎini will also be “bad”. However, in prac-
tice, common initialization of NNs yields small output.
Without loss of generality, we consider in the follow-
ing an unbiased initial function ℎini = 0, which can
be achieved in NNs by applying the AntiSymmetrical
Initialization (ASI) trick.[43]

This static minimization problem defines an FP-
energy 𝐸𝛾(ℎ) =

∫︀
𝛾−1|ℎ̂|2𝑑𝜉 that quantifies the prefer-

ence of the LFP model among all its steady states. Be-
cause 𝛾(𝜉)−1 is an increasing function, say 𝛾(𝜉)−1 =

||𝜉||𝑑+1, the FP-energy
∫︀
||𝜉||𝑑+1|ℎ̂|2𝑑𝜉 amplifies the

high frequencies while diminishing low frequencies. By
minimizing 𝐸𝛾(ℎ), problem (3) gives rise to a low fre-
quency fitting, instead of an arbitrary one, of training
data. By intuition, if target 𝑓* is indeed low frequency
dominant, then ℎ∞ will likely well approximate 𝑓* at
unobserved positions.

To theoretically demonstrate above intuition, we
derive in the following an estimate of the general-
ization error of ℎ∞ using a priori error estimate
technique.[44] Because ℎ(𝑥) = 𝑓*(𝑥) is a viable steady
state, 𝐸𝛾(ℎ∞) ≤ 𝐸𝛾(𝑓*) by the minimization prob-
lem. Using this constraint on ℎ∞, we obtain that,
with probability of at least 1 − 𝛿,

E𝑥[ℎ∞(𝑥)− 𝑓*(𝑥)]2 ≤ 𝐸𝛾(𝑓*)√
𝑛

𝐶𝛾

(︁
2 + 4

√︀
2 log(4/𝛿)

)︁
,

(4)
where 𝐶𝛾 is a constant depending on 𝛾. Error reduces
with more training data as expected with a decay
rate 1/

√
𝑛 similar to the Monte Carlo method. Im-

portantly, because 𝐸𝛾(𝑓*) strongly amplifies high fre-
quencies of 𝑓*, the more high-frequency components
the target function 𝑓* possesses, the worse ℎ∞ may
generalize.

The above theory explains the non-overfiting puz-
zle of NNs as follows: regardless of the number of
parameters of NNs, the F-principle dynamics finds for
an overparameterized NN with a low frequency fit-
ting of training data, which unlikely overfits a low fre-
quency target function (since the FP-norm is small
for low-frequency function). Specifically, it predicts
the following qualitative behaviors of NNs. (i) Prefer-
ence: NNs preferentially learn low frequency fittings
of training data. (ii) Success: NNs often generalize for
low frequency dominant target functions. (iii) Failure:
NNs likely overfit a high frequency target function.

In the following, we test whether these predic-
tions well hold for NNs in experiments. In the first
experiment, we use a DNN to fit high dimensional
high frequency dominant data sampled from a parity
function 𝑓(𝑥) =

∏︀𝑑
𝑗=1 𝑥𝑗 defined on 𝛺 = {−1, 1}𝑑,

whose Fourier transform (−𝐼)𝑑
∏︀𝑑

𝑗=1 sin 2𝜋𝑘𝑗 for 𝑘 ∈
[− 1

4 ,
1
4 ]𝑑 peaks at its highest frequencies 𝑘 ∈ {− 1

4 ,
1
4}

𝑑.
The difficulty of learning the parity function with
NNs is well-known.[45,46] We provide a frequency per-
spective to understand this learning difficulty. For
high-dimensional function, we perform a non-uniform
discrete Fourier transform on the first principle di-
rection of a training data set. As demonstrated in
Fig. 2(a), the well-trained DNN indeed preferentially
learns more low frequencies and less high frequencies
compared to the target. Furthermore, as predicted by
the model, the DNN generalizes badly with a low test
accuracy 38% no more than chance-level 50% (while
training accuracy is 100%!). In the second experi-
ment, we use the widely considered image classifica-
tion dataset of CIFAR10 as an example, on which a
well-trained DNN achieves a test accuracy 68% much
higher than chance-level 10%, and compute its fre-
quency composition by non-uniform discrete Fourier
transform. As shown in Fig. 2(b), the target is in-
deed dominated by low frequencies. Actually, this low
frequency dominance property for most real high di-
mensional image data can be intuitively understood
based on the common sense that a small perturbation
in input image mostly does not change the its cate-
gory as output. Furthermore, as is predicted, DNN
preferentially learns the low frequencies better than
the high ones, leading to a good generalization.
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Fig. 2. Frequency composition (amplitude vs frequency)
of target (black) and the well-trained DNN (red) along
the first principle component direction of inputs of train-
ing data. (a) Target: 10-d parity function; NN: three-layer
fully connected net. (b) Target: CIFAR10; NN: two con-
volutional layers with a fully connected layer.

LFP Model Derived from a Two-Layer NN. Anal-
ysis of the training process of a multi-layer (𝐿 ≥ 2)
NN is well known to be difficult.[9] Recently, based on
a dynamical regime of neural tangent kernel (NTK),
where the gradient flow of overparameterized NNs can
be effectively linearized around initialization, fruitful
mathematical theorems were proved at an abstract
level about the behavior of NNs.[24,47,48] Still, deriv-
ing explicitly the linearized dynamics of even a two-
layer NN, which already possesses similar nontrivial
training and generalization behavior as deeper NNs,
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for quantitative analysis is a challenging task. In this
part, we present such a derivation in frequency do-
main, which yields an LFP model with a specific 𝛾(𝜉)
depending on detailed setups of the target NN, such
as smoothness of 𝜎 and statistics of 𝜃(0). Note that,
since the F-principle generally exists in deeper NNs
and in both NTK and non-NTK regimes, the mecha-
nism unraveled by the above theoretical analysis, i.e.,
low frequency first learning dynamics leads to a low
frequency fitting of data, applies to general DNNs
where the NTK theory can drastically fail.

Considering the following two-layer neural network

𝑓(𝑥;𝜃) =
1√
𝑚

𝑚∑︁
𝑗=1

𝑎𝑗𝜎(𝑤T
𝑗 𝑥 + 𝑟𝑗𝑐𝑗), (5)

where 𝑟𝑗 := |𝑤𝑗 | and 𝜎(𝑥) = max(0, 𝑥), i.e., the
widely used ReLU (rectified linear unit) activation.
Note that our following derivation applies similarly
to other 𝜎 such as sigmoid or tanh activation. De-
note 𝑝𝑗 = (𝑎𝑗 ,𝑤𝑗 , 𝑐𝑗)

T ∈ R𝑑+2, 𝜃 = (𝑝1, . . . ,𝑝𝑚).
During the learning process, i.e., fitting training data
{[𝑥𝑖, 𝑓

*(𝑥𝑖)]}𝑛𝑖=1 generated from a target function
𝑓*(𝑥) by model (5), 𝜃 evolves by the gradient descent
with dynamics at continuous limit

�̇� = −∇𝑅𝑆(𝜃), (6)

with mean-squared error (MSE) loss 𝑅𝑆(𝜃) of the em-
pirical sample distribution in Eq. (2).

At initialization, 𝑎𝑗 , 𝑤𝑗 , and 𝑐𝑗 for 𝑗 = 1, . . . ,𝑚
are sampled independently from random distribu-
tions under mild assumptions that (i) distribution of
𝑤𝑗/|𝑤𝑗 | is uniform on the unit sphere; (ii) variance of
𝑐𝑗 , denoted by 𝜎2

𝑐 , is sufficiently large.
In general, dynamics (6) is difficult to be ana-

lyzed due to its high-dimensional and highly nonlin-
ear nature similar to particle systems in statistical
mechanics.[21] In the following, we show how an LFP
macroscopic statistical description of above dynamics
can be derived at the infinite neuron limit 𝑚 → ∞,
which has been considered in Refs. [20,21,23–25], in
analogy to the thermodynamic limit. This limit with
the scaling factor of 1/

√
𝑚 in NN (5) makes its lin-

earization around initialization

𝑓 lin[𝑥;𝜃(𝑡)] = 𝑓 [𝑥;𝜃(0)] + ∇𝜃𝑓 [𝑥;𝜃(0)][𝜃(𝑡) − 𝜃(0)]
(7)

an effective approximation of 𝑓 [𝑥;𝜃(𝑡)], i.e.,
𝑓 lin[𝑥;𝜃(𝑡)] ≈ 𝑓 [𝑥;𝜃(𝑡)] for any 𝑡, as demonstrated
by both theoretical and empirical studies of neural
tangent kernels (NTK).[24,25] Note that, 𝑓 lin[𝑥;𝜃(𝑡)],
linear in 𝜃 and nonlinear in 𝑥, reserves the universal
approximation power of 𝑓 [𝑥;𝜃(𝑡)] at 𝑚 → ∞. In
the following, we do not distinguish 𝑓 [𝑥;𝜃(𝑡)] from
𝑓 lin[𝑥;𝜃(𝑡)].

Again, analogous to statistical mechanics, while
dynamics (6) acts at a microscopic level on param-
eters of each neuron, function 𝑓 [𝑥,𝜃(𝑡)] for the fit-
ting problem is macroscopic. For simplicity, we denote

𝑓 [𝑥,𝜃(𝑡)] by 𝑓(𝑥, 𝑡). The evolution of 𝑓(𝑥, 𝑡) in the
NTK regime follows gradient flow, i.e.,

𝜕𝑡𝑓(𝑥, 𝑡) =∇𝜃𝑓(𝑥, 𝑡) · 𝜕𝑡𝜃

= −
∫︁
R
𝑢𝜌(𝑥′)𝐾𝜃(𝑥,𝑥′)𝑑𝑥′,

where 𝐾𝜃(𝑥,𝑥′) = ∇𝜃𝑓 [𝑥′,𝜃(0)]∇𝜃𝑓 [𝑥,𝜃(0)], 𝑢(𝑥) =
𝑓(𝑥, 𝑡)−𝑓*(𝑥), 𝑢𝜌(𝑥) = 𝑢(𝑥)𝜌(𝑥). This gradient flow
applies for deep neural networks with arbitrary hid-
den layers in the NTK regime. However, to derive an
explicit form of the kernel 𝐾𝜃, we limit our analysis
to the two-layer ReLU neural network. By applying
Fourier transform to both sides of the above equation,
with approximation we obtain

𝜕𝑡�̂�(𝜉, 𝑡) = −
[︂⟨︀𝑎2 + 𝑟2

⟩︀
𝑎,𝑟

||𝜉||𝑑+3
+

⟨︀
𝑎2𝑟2

⟩︀
𝑎,𝑟

||𝜉||𝑑+1

]︂
𝑢𝜌(𝜉, 𝑡), (8)

where ⟨· · ·⟩𝑎,𝑟 is the expectation with respect to the
initial distribution of 𝑎 and 𝑟. Clearly, it is an LFP
model that prioritizes the learning of low frequencies
quantified by mixed power law decay. This power law
decay results from the decay of the spectrum of 𝜎 de-
pending on its smoothness. For a sigmoid or tanh ac-
tivation, an exponential decay will be obtained. This
model signifies the analogy between NN and statisti-
cal mechanics that the learning process of NN with
a large number of neurons is effectively captured by
several statistics, e.g., ⟨𝑎2 + 𝑟2⟩𝑎,𝑟 and ⟨𝑎2𝑟2⟩𝑎,𝑟, with
microscopic details neglected. Remark that, to derive
model (8), we ignore an additional term arising from
the rotation of 𝑤’s for 𝑑 ≥ 2, that is, ⟨𝑟2⟩𝑟

‖𝜉‖𝑑+1
2

𝛥𝜉⊥𝑢𝜌(𝜉),
where 𝛥𝜉⊥ indicates a Laplacian at the subspace or-
thogonal to 𝜉. While F-principle always holds due to
the power-law decay, there are mild extra effective re-
sults from this term in practice. Details about such
an effect remains a problem for future study. This
suggests a wider class of generalized LFP models, in
which 𝛾(𝜉) can be a general linear operator in fre-
quency domain. Detailed properties about the gener-
alized model remains a problem for future study.

To analyze model (8), we resort to its equivalent
optimization problem as discussed before. Based on
the equivalent optimization problem in Eq. (3) and the
error estimate in Eq. (4), the non-overfitting puzzle for
two-layer wide ReLU NNs can be explained. Next, we
analyze each decaying term for 1-d problems (𝑑 = 1).
When 1/𝜉2 term dominates, the corresponding mini-
mization problem Eq. (3) rewritten in spatial domain
yields

min
ℎ

∫︁
|ℎ′(𝑥) − ℎ′

ini(𝑥)|2𝑑𝑥,

s.t.ℎ(𝑥𝑖) = 𝑓*(𝑥𝑖), 𝑖 = 1, . . . , 𝑛,

(9)

where primes represent differentiations. For ℎini(𝑥) =
0, Eq. (9) indicates a linear spline interpolation. Sim-
ilarly, when 1/𝜉4 dominates,

∫︀
|ℎ′′(𝑥) − ℎ′′

ini(𝑥)|2𝑑𝑥 is
minimized, indicating a cubic spline. In general, above
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two power law decays coexist, giving rise to a specific
mixture of linear and cubic splines. For high dimen-
sional problems, the model prediction is difficult to
interpret because the order of differentiation depends
on 𝑑 and can be fractal.

(a)

(b)
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Fig. 3. Characteristics of 𝑓NN (red solid) vs 𝑓LFP (blue
dashed dot) and splines [grey dashed, cubic spline in (a)
and linear spline in (b)] for a 1-d problem. All curves
nearly overlap with one other. Two-layer NN Eq. (5) of
40000 hidden neurons is initialized with (a) ⟨𝑎2+𝑟2⟩𝑎,𝑟 ≫
⟨𝑎2𝑟2⟩𝑎,𝑟 and (b) ⟨𝑎2 + 𝑟2⟩𝑎,𝑟 ≪ ⟨𝑎2𝑟2⟩𝑎,𝑟. Black stars
indicates training data.
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Fig. 4. The 2-d XOR problem with four training data
indicated by black stars learned by a two-layer NN Eq. (5)
of 160000 hidden neurons: (a) 𝑓NN illustrated in color
scale, (b) 𝑓LFP (ordinate) vs 𝑓NN (abscissa) represented
by red dots evaluated over whole input domain [−1, 1]2.
The black line indicates the identity function.

In the following, we examine experimentally the
quantitative prediction power of the LFP model
Eq. (8). For convenience of notation, solution pre-

dicted by the LFP model (8) is denoted as 𝑓LFP(𝑥) =
𝑓(𝑥,∞). The function learned by NN is denoted
by 𝑓NN(𝑥). As shown in Fig. 3, for a 1-d problem,
𝑓LFP(𝑥) accurately predicts 𝑓NN(𝑥) over two different
initializations. As predicted by above analysis, a wide
NN initialized with ⟨𝑎2 + 𝑟2⟩𝑎,𝑟 ≫ ⟨𝑎2𝑟2⟩𝑎,𝑟 learns ap-
proximately a cubic spline, whereas ⟨𝑎2 + 𝑟2⟩𝑎,𝑟 ≪
⟨𝑎2𝑟2⟩𝑎,𝑟 a linear spline. For 𝑑 = 2, we consider the
famous XOR problem, which cannot be solved by one-
layer neural networks.[45] The training samples consist
of four points represented by black stars in Fig. 4(a).
As shown in Fig. 4(b), our LFP model predicts accu-
rately outputs of the well-trained NN over the input
domain [−1, 1]2.

Discussion. In this study, we propose the phe-
nomenological LFP model that explains the absence
of overfitting in NNs by its low frequency preference.
Our theory informs that NNs are no panacea to all
difficult problems and are bad in general for fitting
high frequency target functions. As an example, it has
been demonstrated that a standard DNN fails drasti-
cally for ground state fitting of a frustrated quantum
magnet with a rapidly oscillating ground-state charac-
teristic function.[49] Therefore, to solve a broad spec-
trum of problems with practical success, it is impor-
tant to take into account the low frequency preference
of DNNs in the algorithm design. Our work on F-
principle is only a starting point to a more compre-
hensive understanding of NNs. In the future, the role
of depth, width, optimization methods and other hy-
perparameters in fine tuning the F-principle dynamics
will be studied in detail. Importantly, more prefer-
ences (inductive biases) of NNs, which are keys to open
the “black box”, need to be unraveled. Specifically, the
physics approach from phenomenological study based
on carefully designed experiments to theoretical study
based on effective models can play an important role
as demonstrated by the series of works on F-principle.

We thank Hugues Chate for critical reading and
suggestions on the manuscript. We also thank David
W. MacLaughlin, Haijun Zhou, Leihan Tang, Hepeng
Zhang, and Yongfeng Zhao for helpful comments on
the manuscript.
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