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Abstract
Understanding deep learning is increasingly emergent as it penetrates more and more into
industry and science. In recent years, a research line from Fourier analysis sheds light on this
magical “black box” by showing a Frequency principle (F-Principle or spectral bias) of the
training behavior of deep neural networks (DNNs)—DNNs often fit functions from low to
high frequencies during the training. TheF-Principle is first demonstrated byone-dimensional
(1D) synthetic data followed by the verification in high-dimensional real datasets. A series
of works subsequently enhance the validity of the F-Principle. This low-frequency implicit
bias reveals the strength of neural networks in learning low-frequency functions as well as its
deficiency in learning high-frequency functions. Such understanding inspires the design of
DNN-based algorithms in practical problems, explains experimental phenomena emerging
in various scenarios, and further advances the study of deep learning from the frequency
perspective. Although incomplete, we provide an overview of the F-Principle and propose
some open problems for future research.
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1 Introduction

1.1 Motivation

In practice, deep learning, often realized by deep neural networks (DNNs), has achieved
tremendous success in many applications, such as computer vision, speech recognition,
speech translation, and natural language processing. It also has become an indispensable
method for solving a variety of scientific problems. On the other hand, the DNN sometimes
fails and causes critical issues in applications. In theory, the DNN remains a black box for
decades. Many researchers make the analogy between the practical study of the DNN and the
alchemy. Due to the booming application of DNNs, it has become an important and urgent
mission to establish a better theoretical understanding of DNNs.

In recent years, the theoretical study of DNNs has flourished. Yet, we still need a clear
demonstration of how these theoretical results provide key insight and guidance to practical
study of DNNs. An insightful theory usually guides practice from two aspects—capability
and limitation. For example, the conservation of mass in chemistry informs the fundamental
limitation of chemical reactions that they cannot turn one element into another, e.g., turning
bronze into gold. On the other hand, they may combine elementary substances into their
compounds. These understandings are extremely valuable, with which, the study of alchemy
transforms into modern chemistry. In this work, we overview the discovery and studies about
the F-principle (F-Principle) of deep learning [92, 114, 115, 125], by which we obtain a basic
understanding of the capability and limitation of deep learning, i.e., the difficulty in learning
and achieving good generalization for high-frequency data as well as the easiness and the
intrinsic preference for low-frequency data. Based on this guideline of the F-Principle, many
algorithms have been developed to either employ this low-frequency bias of DNN to well fit
smooth data or design special tricks/architectures to alleviate the difficulty of DNN in fitting
data known to be highly oscillatory [14, 55, 73, 106]. Hopefully, with the development of the
F-Principle and theories from other perspectives, the practical study of deep learning would
become a real science in the near future.

The discovery of the F-Principle is made to confront the following open puzzle central
for DNN theories: why over-parameterized DNNs generalize well in many problems, such
as natural image classification. In 1995, Vladimir Vapnik and Larry Jackel made a bet,
witnessed byYannLeCun, that is, Larry claimed that by 2000,wewould have had a theoretical
understanding of why big neural nets work well (in the form of a bound similar to what
we have for SVMs). Also in 1995, Leo Breiman published a reflection after refereeing
papers for NIPS [11], where he raised many important questions regarding DNNs, including
“why don’t heavily parameterized neural networks overfit the data”. In 2016, an empirical
study [122] raised much attention again to this over-parameterization puzzle with systematic
demonstration onmodernDNNarchitectures and datasets. This over-parameterization puzzle
contradicts the conventional generalization theory and traditionalwisdom inmodeling, which
suggests that a model of too many parameters easily overfits the data. This is exemplified by
von Neumann’s famous quote “with four parameters I can fit an elephant” [28]. Establishing
a good theoretical understanding of this over-parameterization puzzle has since becomemore
and more crucial as modern DNN architecture incorporates increasingly more parameters,
e.g., ∼ 108 for VGG19 [102], ∼ 1011 for GPT-3 [13], which indeed achieves huge success
in practice.

To address this puzzle, a notable line of works, starting from the conventional complexity-
based generalization theory, attempts to propose novel norm-based complexity measures
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suitable for DNNs. However, a recent empirical study shows that many norm-based com-
plexity measures not only perform poorly, but negatively correlate with generalization,
specifically, when the optimization procedure injects some stochasticity [57]. Another line of
works starts from a variety of ideal models of DNNs, e.g., deep linear network [64, 95, 96],
committee machine [4, 35], spin glass model [24], mean-field model [23, 82, 94, 103], and
neural tangent kernel (NTK) [54, 65]. These works emphasize fully rigorous mathematical
proofs and have difficulties in providing a satisfactory explanation for general DNNs [121].

The F-Principle overviewed in this paper takes a phenomenological approach to the deep
learning theory, to understand complex systems, black boxes at first glance, in science and
especially in physics. Taking this approach, the first difficulty we encounter is the extreme
complexity of deep learning experiments in practice. For example, the MNIST dataset is a
well-known simple (if not too simple) benchmark for testing a DNN. However, the learned
DNN is already a very high-dimensional (784-dimensional) mapping, which is impossible to
be visualized and analyzed exactly. In the face of such difficulty, an important stepwe take is to
carefully design synthetic problems simple enough for thorough analysis and visualization of
the DNN learning process, but complicated enough for reproducing interesting phenomena.
We train DNNs to fit a function with 1-D input and 1-D output like sin(x) + sin(5x) shown
in Fig. 1. Luckily, a clear phenomenon emerges from the thorough visualization of the
DNN training process that the DNN first captures a coarse and relatively “flat” landscape
of the target function, followed by more and more oscillatory details. It seems that the
training of a DNN gives priority to the flat functions, which should generalize better for
flat target functions by intuition, over the oscillatory functions. By the phenomenological
approach, we next quantify this phenomenon by the Fourier analysis, which is a natural tool
to quantify flatness and oscillation. As shown later, by transforming the DNN output function
into the frequency domain, the differences in convergence rate between flat and oscillatory
components become apparent. We conclude this phenomenon of implicit low-frequency bias
by the F-Principle/spectral bias [92, 114, 115, 125], i.e., DNNs often fit target functions from
low to high frequencies during the training, followed by extended experimental studies for
real datasets and a series of theoretical studies detailed in the main text.

In the end, as a reflection, we note that the specialness of the discovery of the F-Principle
lies in our faith and insistence on performing systematic DNN experiments on simple 1-D
synthetic problems, which is simple for observation and analysis but not clearly understood.
From the perspective of phenomenological study, such simple cases serve as an excellent
starting point, however, they are rarely considered in the experimental studies of DNNs.
Some researchers even deem MNIST experiments as too simple for an empirical study
without realizing that even phenomenon regarding the training of DNN on 1-D problems
is not well studied. In addition, since the Fourier analysis is not naturally considered for
high dimensional problems due to the curse of dimensionality, it is difficult even to think
about the Fourier transform for DNNs on real datasets as done in Sect. 2 without making a
direct observation of DNN learning from flat to oscillatory in 1-D problems. Therefore, by
overviewing the discovery and studies of the F-Principle, we advocate for the phenomenolog-
ical approach to the deep learning theory, by which systematic experimental study on simple
problems should be encouraged and serve as a key step for developing the theory of deep
learning.

123



Communications on Applied Mathematics and Computation

Fig. 1 The training process of a DNN. Training data are sampled from the target function sin(x) + sin(5x).
Red, green, and black curves indicate DNN output, sin(x), and sin(x) + sin(5x), respectively

1.2 Frequency Principle

To visualize or characterize the training process in the frequency domain requires a Fourier
transform of the training data. However, the Fourier transform of high-dimensional data
suffers from the curse of dimensionality and the visualization of high-dimensional data is
difficult. Alternatively, one can study the problem of 1-D synthetic data. A series of experi-
ments on synthetic low-dimensional data show that the DNN training follows an F-Principle
[114, 115, 125], that is,

DNNs often fit target functions from low to high frequencies during the training.
This implicit frequency bias is also called spectral bias [92] and can be robustly observed no
matter how over-parameterized DNNs are. More experiments on real datasets are designed to
confirm this observation [114]. It is worthy to note that the frequency used here is a response
frequency characterizing how the output is affected by the input. This frequency is easy
to be confused in imaging classification problems. For example, in the MNIST dataset, the
frequency domain is also 784-dimensional but not 2-D, i.e., the frequency of the classification
function but not the image frequency w.r.t. 2-D space.

Xu et al. [114] proposed a key mechanism of the F-Principle that the regularity of the
activation function converts into the decay rate of a loss function in the frequency domain.
Theoretical studies subsequently show that the F-Principle holds in a general setting with
continuous samples [78] and in the regime of wide DNNs NTK regime [54]) with finite
samples [77, 125, 126] or samples distributed uniformly on sphere [7, 10, 18, 119]. E et al.
[33] studied the neural network from a continuous viewpoint, where neurons are treated as
a discrete version of a continuous distribution of weights, and samples as a discrete version
of another continuous distribution of data. The evolution of the network output during the
training follows an integral equation, which would naturally lead to the training that follows
the F-Principle. In addition to characterizing the training speed of DNNs, the F-Principle
also implicates that DNNs prefer the low-frequency function and generalize well for low-
frequency functions [77, 114, 125, 126].

The F-Principle further inspires the design of DNNs to fast learn a function with the high
frequency, such as in scientific computing and image or point cloud fitting problems [15, 55,
73, 106]. In addition, the F-Principle provides a mechanism to understand many phenomena
in applications and inspires a series of studies on deep learning from a frequency perspective.
The study of deep learning is a highly inter-disciplinary problem. As an example, the Fourier
analysis, an approach to the signal processing, is a useful tool to better understand deep
learning [41]. A comprehensive understanding of deep learning remains an exciting research
subject calling for more fusion of existing approaches and new methods.
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2 Empirical Study of F-Principle

Before the discovery of the F-Principle, someworks have suggested the learning of the DNNs
may follow an order from simple to complex [3]. However, previous empirical studies focus
on the real dataset, which is high dimensional. Thus, it is difficult to find a suitable quantity to
characterize such intuition. In this section, we review the empirical study of the F-Principle,
which first presents a clear picture from the 1-D data and then carefully designs experiments
to verify the F-Principle in high-dimensional data [92, 114, 115].

2.1 Frequency Principle in Low-Dimensional Problems

To clearly illustrate the phenomenon that follows the F-Principle, one can use 1-D synthetic
data to show the relative error of different frequencies during the training of the DNN. The
following shows an example from Xu et al. [114].

Training samples are drawn from a 1-D target function f (x) = sin(x) + sin(3x) +
sin(5x) with three important frequency components and even space in [−3.14, 3.14], i.e.,
{xi , f (xi )}n−1

i=0 . The discrete Fourier transform (DFT) of f (x) or the DNN output (denoted by

h(x)) is computed by f̂k = 1
n

∑n−1
i=0 f (xi )e−i2π ik/n , where k is the frequency. As shown in

Fig. 2a, the target function has three important frequencies as designed (black dots at the inset
in Fig. 2a). We use a network with four hidden layers consisting of 200, 200, 200, and 100
neurons, respectively. Both weights and bias are initialized from a uniform distribution on
[−√

1/min,
√
1/min], wheremin is the number of input neurons. To examine the convergence

behavior of different frequency components during the training with MSE and gradient
descent, we compute the relative difference between the DNN output and the target function
for the three important frequencies at each recording step, that is, �F (k) = |ĥk − f̂k |/| f̂k |,
where | · | denotes the norm of a complex number. As shown in Fig. 2b, the DNN converges
the first frequency peak very fast, while converging the second frequency peak much more
slowly, followed by the third frequency peak.

A series of experiments are performed with relatively cheap cost on synthetic data to
verify the validity of the F-Principle and eliminate somemisleading factors. For example, the
stochasticity and the learning rate are not important to reproduce the spectral bias phenomenon
that follows the F-Principle. If one only focuses on high-dimensional data, such as the simple
MNIST, it would require a much more expensive cost of computation and computer memory
to examine the impact of the stochasticity and the learning rate. The study of synthetic data
shows clear guidance to examine the F-Principle in the high-dimensional data. In addition,
since the frequency is a quantity which the theoretical study is relatively easy to access, the
F-Principle provides a theoretical direction for further study.

An image can be regarded as a mapping from the 2-D space coordinate to the pixel
intensity. Learning this problem with a mean squared loss is a 2-D regression problem. The
experiment in Fig. 3 uses a fully connected DNN to fit the camera-man image in Fig. 3a. The
DNN learns from a coarse-grained image to produce one with more details as the training
proceeds, shown in Figs. 3b–d. Obviously, this is also an order from low- to high-frequencies,
which is similar to how biological brain remembers an image. In Xu [113], the F-Principle
is examined through the quantitative characterization of the convergence of each frequency
in a cross section of a 2-D regression problem.

This 2-D example also shows that utilizing DNN to restore an image may take advantage
of the low-frequency preference, such as inpainting tasks, but also should be cautionary about
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Fig. 2 1-D input. a f (x). Inset: | f̂ (k)|. b �F (k) of three important frequencies (indicated by black dots in
the inset of (a)) against different training epochs. Reprinted from Xu et al. [114]

Fig. 3 F-Principle in 2-D datasets. Reprinted from Xu et al. [114]

its insufficiency in learning high-frequency structures. To overcome this insufficiency, some
algorithms are developed [22, 56, 106, 110], which will be reviewed more in Sect. 4.7.

2.2 Frequency Principle in High-Dimensional Problems

To study the F-Principle in high-dimensional data, two obstacles should be overcome first:
what is the frequency in high dimension and how to separate different frequencies.

The concept of “frequency” often causes confusion in image classification problems. The
image (or input) frequency (NOT used in studying the F-Principle of classification problems)
is the frequency of the 2-D function I : R2 → R representing the intensity of an image over
pixels at different locations. This frequency corresponds to the rate of change in intensity
across neighboring pixels. For example, an image of constant intensity possesses only the
zero frequency, i.e., the lowest frequency, while a sharp edge contributes to high frequencies
of the image.

The frequency used in studying the F-Principle of classification problems is also called
response frequency of a general Input-Output mapping f . For example, consider a sim-
plified classification problem of partial MNIST data using only the data with labels 0 and
1, f (x1, x2, · · · , x784): R

784 → {0, 1} mapping 784-D space of pixel values to the 1-D
space, where x j is the intensity of the j-th pixel. Denote the mapping’s Fourier transform
as f̂ (k1, k2, · · · , k784). The frequency in the coordinate k j measures the rate of change of
f (x1, x2, · · · , x784) with respect to x j , i.e., the intensity of the j-th pixel. If f possesses sig-
nificant high frequencies for large k j , then a small change of x j in the image might induce a
large change of the output (e.g., adversarial example). For a real data, the response frequency
is rigorously defined via the standard nonuniform discrete Fourier transform (NUDFT).

123



Communications on Applied Mathematics and Computation

0
F

T T

F

Fig. 4 Projection method. a, b are for MNIST, c, d for CIFAR10. a, c Amplitude |ŷk | vs. frequency. Selected
frequencies are marked by black squares. b, d �F (k) versus training epochs for the selected frequencies.
Reprinted from Xu et al. [114]

The difficulty of separating different frequencies is that the computation of the Fourier
transform of high-dimensional data suffers from the curse of dimensionality. For example, if
one evaluates two points in each dimension of the frequency space, then, the evaluation of the
Fourier transform of a d-dimensional function is on 2d points, an impossibly large number
even for MNIST data with d = 784. Two approaches are proposed in Xu et al. [114].

2.2.1 Projection Method

One approach is to study the frequency in the 1-D frequency space. For a dataset
{(xi , yi )}n−1

i=0 with yi ∈ R. The high-dimensional discrete nonuniform Fourier transform

of {(xi , yi )}n−1
i=0 is ŷk = 1

n

∑n−1
i=0 yi exp (−i2π k · xi ). Consider a direction of k in the

Fourier space, i.e., k = k p1, where p1 is a chosen and fixed unit vector. Then, we have
ŷk = 1

n

∑n−1
i=0 yi exp

(−i2π( p1 · x j )k
)
, which is essentially the 1-D Fourier transform of

{(x p1,i , yi )}n−1
i=0 , where x p1,i = p1 · xi is the projection of xi on the direction p1. Similarly,

one can examine the relative difference between the DNN output and the target function for
the selected important frequencies at each recording step. In the experiments in Xu et al.
[114], p1 is chosen as the first principle component of the input space. A fully connected
network and a convolutional network are used to learn MNIST and CIFAR10, respectively.
As shown in Figs. 4a and c, low frequencies dominate in both real datasets. As shown in
Figs. 4b and d, one can easily observe that DNNs capture low frequencies first and gradually
capture higher frequencies.

2.2.2 Filtering Method

The projection method examines the F-Principle in only several directions. To compensate
the projection method, one can consider a coarse-grained filtering method which is able to
unravel whether, in the radially averaged sense, low frequencies converge faster than high
frequencies.

The idea of the filtering method is to use a Gaussian filter to derive the low-frequency part
of the data and then examine the convergence of the low- and high-frequency parts separately.
The low-frequency part can be derived by

ylow,δ
i � ( y ∗ Gδ)i , (1)

where ∗ indicates the convolution operator, and δ is the standard deviation of the Gaussian
kernel. Since the Fourier transform of a Gaussian function is still a Gaussian function but
with a standard deviation 1/δ, 1/δ can be regarded as a rough frequency width which is kept
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Fig. 5 F-Principle in real datasets. elow and ehigh indicated by color against training epoch. Reprinted from
Xu et al. [114]

in the low-frequency part. The high-frequency part can be derived by

yhigh,δi � yi − ylow,δ
i . (2)

Then, one can examine

elow =
(∑

i | ylow,δ
i − hlow,δ

i |2
∑

i | ylow,δ
i |2

) 1
2

, (3)

ehigh =
(∑

i | yhigh,δi − hhigh,δi |2
∑

i | yhigh,δi |2

) 1
2

, (4)

where hlow,δ and hhigh,δ are obtained from the DNN output h. If elow < ehigh for different δ’s
during the training, the F-Principle holds; otherwise, it is falsified. Note the DNN is trained
as usual.

As shown in Fig. 5, the low-frequency part converges faster in the following three settings
for different δ’s: a tanh fully connected network for MNIST, a ReLU shallow convolutional
network for CIFAR10, and a VGG16 [102] for CIFAR10.

Another approach to examine the F-Principle in high-dimensional data is to add noise to
the training data and examine when the noise is captured by the network [92]. Note that this
approach contaminates the training data.

3 Theoretical Study of F-Principle

An advantage of studying DNNs from the frequency perspective is that frequency can often
be theoretically analyzed. This is especially important in deep learning since deep learning
is often criticized as a black box due to its lack of theoretical support. In this section, we
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review theories of the F-Principle for various settings. A key mechanism of the F-Principle
is based on the regularity of the activation function that was first proposed in Xu [113] and
was formally published by Xu et al. [114].

The theories have been developed to explore the F-Principle in an ideal setting [114], in
general setting with infinite samples [78], in a continuous viewpoint [33], and in the regime
of wide DNNs (Neural Tangent Kernel (NTK) regime [54]) with specific sample distributions
[7, 10, 18, 117] or any finite samples [77, 125, 126].

3.1 Ideal Setting for Analyzing Activation Function

The following presents a simple case to illustrate how the F-Principle may arise. More details
can be found in Xu et al. [114] and Xu [113]. The activation function we consider is

σ(x) = tanh(x) = ex − e−x

ex + e−x
, x ∈ R.

For a DNN of one hidden layer with m nodes, 1-D input x and 1-D output

h(x) =
m∑

j=1

a jσ(w j x + b j ), a j , w j , b j ∈ R, (5)

where w j , a j , and b j are the training parameters. In the sequel, we will also use the notation
θ = {θl j } with θ1 j = a j , θ2 j = w j , and θ3 j = b j , j = 1, · · · ,m. Note that the Fourier
transform of tanh(x) is σ̂ (k) = − iπ

sinh(π k/2) . The Fourier transform of σ(w j x + b j ) with
w j , b j ∈ R, j = 1, · · · ,m reads as

̂σ(w j · +b j )(k) = 2π i

|w j | exp
(
ib j k

w j

)
1

exp(− π k
2w j

) − exp( π k
2w j

)
. (6)

Note that the last term exponentially decays w.r.t. |k|. Thus,

ĥ(k) =
m∑

j=1

2π a j i

|w j | exp

(
ib j k

w j

)
1

exp(− π k
2w j

) − exp( π k
2w j

)
. (7)

Define the amplitude deviation between the DNN output and the target function f (x) at
frequency k as

D(k) � ĥ(k) − f̂ (k).

Write D(k) as D(k) = A(k)eiφ(k), where A(k) ∈ [0,+∞) and φ(k) ∈ R are the amplitude
and phase of D(k), respectively. The loss at frequency k is L(k) = 1

2 |D(k)|2, where | · |
denotes the normof a complex number. The total loss function is defined as L = ∫ +∞

−∞ L(k)dk.
Note that according to Parseval’s theorem, this loss function in the Fourier domain is equal
to the commonly used loss of the mean squared error, that is, L = ∫ +∞

−∞
1
2 (h(x)− f (x))2dx .

The decrement along any direction, say, with respect to parameter θl j , is

∂L

∂θl j
=
∫ +∞

−∞
∂L(k)

∂θl j
dk. (8)
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The absolute contribution from frequency k to this total amount at θl j is
∣
∣
∣
∣
∂L(k)

∂θl j

∣
∣
∣
∣ ≈ A(k) exp

(−| π k/2w j |
)
Fl j (θ j , k), (9)

where θ j � {w j , b j , a j }, θl j ∈ θ j , and Fl j (θ j , k) is a function with respect to θ j and k,
which is approximate O(1).

When the component at frequency kwhere ĥ(k) is not close enough to f̂ (k), i.e., A(k) 	= 0,
exp

(−| π k/2w j |
)
would dominate Fl j (θ j , k) for a small w j . Intuitively, the gradient of

low-frequency components dominates the training, thus, leading a fast convergence of low-
frequency components. If w j is larger, then, the dominance of the low frequency is less.

3.2 NTK Setting and Linear F-Principle

In general, it is difficult to analyze the convergence rate of each frequency due to its high
dimensionality and nonlinearity. However, in a linear NTK regime [54], where the network
has awidthm approaching infinite and a scaling factor of 1/

√
m, severalworks have explicitly

shown the convergence rate of each frequency.

3.2.1 NTK Dynamics

One can consider the following gradient-descent flow dynamics of the empirical risk LS of
a network function f (·, θ) parameterized by θ on a set of training data {(xi , yi )}ni=1

{
θ̇ = −∇θ LS(θ),

θ(0) = θ0,
(10)

where

LS(θ) = 1

2

n∑

i=1

( f (xi , θ) − yi )
2. (11)

Then, the training dynamics of the output function f (·, θ) is

d

dt
f (x, θ) = ∇θ f (x, θ) · θ̇

= −∇θ f (x, θ) · ∇θ LS(θ)

= −∇θ f (x, θ) ·
n∑

i=1

∇θ f (xi , θ)( f (xi , θ) − yi )

= −
n∑

i=1

Km(x, xi )( f (xi , θ) − yi ),

where for time t the NTK evaluated at (x, x′) ∈ � × � reads as

Km(x, x′)(t) = ∇θ f (x, θ(t)) · ∇θ f (x
′, θ(t)). (12)

At the NTK regime, we denote

K ∗(x, x′) := lim
m→∞ Km(x, x′)(t). (13)
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The gradient descent of the model thus becomes

d

dt

(
f (x, θ(t)) − f (x)

)
= −

n∑

i=1

K ∗(x, xi )
(
f (xi , θ(t)) − f (xi )

)
. (14)

Define the residual u(x, t) = f (x, θ(t)) − f (x). Denote X := (x1, · · · , xn)T ∈ R
n×d

and Y := ( y1, · · · , yn)
T ∈ R

n as the training data, u(X, t) := (u(x1, t), · · · , u(xn, t)) ∈
R
n,∇θ f (X, θ(t)) := (∇θ f (x1, θ(t)), · · · ,∇θ f (xn, θ(t))) ∈ R

n×M (M is the number of
parameters), and denote K ∗ ∈ R

n×n as a matrix with

K ∗
i, j = K ∗(xi , x j ). (15)

Then, one can obtain

du(X, t)

dt
= −K ∗u(X, t). (16)

In a continuous form, one can define the empirical density ρ(x) = ∑n
i=1 δ(x − xi )/n and

further denote uρ(x, t) = u(x, t)ρ(x). Therefore, the dynamics for u becomes

d

dt
u(x, t) = −

∫

Rd
K ∗(x, x′)uρ(x′, t)dx′. (17)

This continuous form renders an integral equation analyzed in E et al. [33].
The convergence analysis of the dynamics in (16) can be done by performing eigen

decomposition of K ∗. The component in the sub-space of an eigen-vector converges faster
with a larger eigen-value. A series of works further show that the eigen-vector with a larger
eigen-value is lower frequency, therefore, providing a rigorous proof for the low-frequency
bias of the DNN training process in the NTK regime for two-layer networks.

Consider a two-layer DNN

f (x, θ) = 1√
m

m∑

j=1

a jσ(wT
j x + b j ), (18)

where the vector of all parameters θ is formed of the parameters for each neuron

(a j ,w
T
j , b j )

T ∈ R
d+2 for j ∈ [m]. At the infinite neuron limit m → ∞, the following

linearization around initialization:

f lin (x; θ(t)) = f (x; θ(0)) + ∇θ f (x; θ(0)) (θ(t) − θ(0)) (19)

is an effective approximation of f (x; θ(t)), i.e., f lin (x; θ(t)) ≈ f (x; θ(t)) for any t ,
as demonstrated by both theoretical and empirical studies of NTKs [54, 65]. Note that,
f lin (x; θ(t)), linear in θ and nonlinear in x, reserves the universal approximation power of
f (x; θ(t)) atm → ∞. In the following of this subsection, we do not distinguish f (x; θ(t))
from f lin (x; θ(t)).

3.2.2 Eigen Analysis for Two-Layer DNNwith Dense Data Distribution

For a two-layer ReLU network, K ∗ enjoys good properties for the theoretical study. The exact
form of K ∗ can be theoretically obtained [111]. Under the condition that training samples are
distributed uniformly on a sphere, the expectation of the gram matrix for a two-layer ReLU
network with respect to the samples can be explicitly computed, then, the spectrum of K ∗
can be obtained through spherical harmonic decomposition [111]. In a rough intuition, each
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eigen-vector of K ∗ corresponds to a specific frequency. Based on such harmonic analysis,
Cao et al. [18] and Basri et al. [7] estimate the eigen-values of K ∗, i.e., the convergence rate
of each frequency. For an arbitrary data distribution, it is often difficult to obtain the explicit
form of the eigen decomposition of K ∗. Basri et al. [6] further release the condition that data
distributed uniformly on a sphere to that data distributed piecewise constant on a sphere but
limit the result on the 1-D sphere. Similarly under the uniform distribution assumption in
the NTK regime, Bordelon et al. [10] show that as the size of the training set grows, ReLU
DNNs fit successively higher spectral modes of the target function. Empirical studies also
validate that real data often align with the eigen-vectors that have large eigen-values, i.e.,
low-frequency eigen-vectors [5, 27, 63].

3.2.3 Linear F-Principle for Two-Layer Neural Network with Arbitrary Data Distribution

The condition of dense distribution, such as uniform on a sphere, is often non-realistic in
training. Parallel work by Zhang et al. [125, 126] studies the evolution of each frequency for
two-layer wide ReLUnetworkswith any data distribution, including randomly discrete cases,
and derives the linear F-Principle (LFP) model. Luo et al. [77] provide a rigorous version
of Zhang et al. [125, 126] and extend the study of ReLU activation function in Zhang et al.
[125, 126] to general activation functions. Luo et al. [77] circumvent the difficulty of eigen
decomposition for arbitrary data distribution by analyzing the evolution of the network output
in the Fourier space. The convergence rate of each frequency can be explicitly obtained, thus,
its analysis can be extended to arbitrary data distribution.

The key idea is to perform the Fourier transform of the kernel K ∗(x, x′) w.r.t. both x and
x′. To separate the evolution of each frequency, one has to assume the bias is significantly
larger than 1. In numerical experiments, by taking the order of bias as the maximum of the
input weight and the output weight, one can obtain an accurate approximation of two-layer
DNNs with the LFP.

Weuse anLFP result for the two-layerReLUnetwork for intuitive understanding.Consider
the residual u(x, t) = f (x, θ(t)) − f ∗(x), one can obtain

∂t û = −(γ (ξ))2ûρ(ξ) (20)

with

(γ (ξ))2 = C1

‖ξ‖d+3 + C2

‖ξ‖d+1 (21)

where ·̂ is the Fourier transform,C1 andC2 are constants depending on the initial distribution
of parameters, and (·)ρ(x) := (·)(x)ρ(x). ρ(x) is the data distribution, which can be a
continuous function or ρ(x) = �n

i=1δ(x − xi )/n.
One can further prove that the long-time solution of (20) satisfies the following constrained

minimization problem:

min
h

∫

γ (ξ)−2
∣
∣ĥ(ξ) − ĥini(ξ)

∣
∣2dξ ,

s.t. h(xi ) = f ∗(xi ), i = 1, · · · , n.

(22)

Based on the equivalent optimization problem in (22), each decaying term for 1-D problems
(d = 1) can be analyzed. When 1/ξ2 term dominates, the corresponding minimization
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problem (22) which can be rewritten into the spatial domain yields

min
h

∫
∣
∣h

′
(x) − h

′
ini(x)

∣
∣2dx,

s.t. h(xi ) = f ∗(xi ), i = 1, · · · , n,

(23)

where ′ indicates differentiation. For hini(x) = 0, (23) indicates a linear spline interpolation.
Similarly, when 1/ξ4 dominates,

∫ |h ′′
(x) − h

′′
ini(x)|2dx is minimized, indicating a cubic

spline. In general, the above two power laws decay and coexist, giving rise to a specific
mixture of linear and cubic splines. For high-dimensional problems, the model prediction
is difficult to interpret because the order of differentiation depends on d and can be fractal.
Similar analysis in the spatial domain can be found in the subsequentwork in Jin andMontúfar
[58].

Inspired by the variational formulation of the LFP model in (22), Luo et al. [76] propose
a new continuum model for the supervised learning. This is a variational problem with a
parameter α > 0:

min
h∈H Qα[h] =

∫

Rd
〈ξ〉α

∣
∣
∣ĥ(ξ)

∣
∣
∣
2
dξ , (24)

s.t. h(xi ) = yi , i = 1, · · · , n, (25)

where 〈ξ〉 = (1+‖ξ‖2) 1
2 is the “Japanese bracket” of ξ andH = {h(x)| ∫

Rd 〈ξ〉α
∣
∣
∣ĥ(ξ)

∣
∣
∣
2
dξ <

∞}.
Luo et al. [76] prove that α = d is a critical point. If α < d , the variational problem leads

to a trivial solution that is only non-zero at the training data point. If α > d , the variational
problem leads to a solution with certain regularity. The LFP model shows that a DNN is a
convenient way to implement the variational formulation, which automatically satisfies the
well-posedness condition.

Finally, we give some remarks on the difference between the eigen decomposition and
the frequency decomposition. In the non-NTK regime, the eigen decomposition can be sim-
ilarly analyzed but without informative explicit form. In addition, the study of bias from the
perspective of eigen decomposition is very limited. For finite networks, which are practically
used, the kernel evolves with training. Thus, it is hard to understand what kind of compo-
nent converges faster or slower. The eigen mode of the kernel is also difficult to perceive. In
contrast, the frequency decomposition is easy to interpret, and a natural approach is widely
used in science.

3.3 Spectral Bias of Fully ConnectedMulti-Layer Networks

Luo et al. [78] consider fully connected multi-layer DNNs trained by a general loss function
R̃D(θ) and measure the convergence of different frequencies by a mean squared loss. Similar
to the filtering method, the approach of Luo et al. [78] is to decompose the frequency domain
into a low-frequency part and a high-frequency part. The key idea is as follows. The Fourier
spectrum of an activation function with a certain regularity would decay with a certain rate.
This decay rate would lead to that the gradient of the loss function of a particular frequency
would decay with frequency.

Based on the following assumptions, i.e., i) certain regularity of target function, sample
distribution function, and activation function; ii) bounded training trajectory with loss con-
vergence. Luo et al. [78] prove that the change of high-frequency loss over the total loss
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decays with the separated frequency with a certain power, which is determined by the regu-
larity assumption. A key ingredient in the proof is that the composition of functions still has
a certain regularity, which renders the decay in the frequency domain. This result thus holds
for general network structures with multiple layers. Aside from its generality, the character-
ization of the F-Principle is too coarse-grained to differentiate the effect network structure
or the specialty of the DNNs, but only gives a qualitative understanding.

E et al. [33] present a continuous framework to study machine learning and suggest that
the gradient flows of neural networks are nice flows, and they obey the F-Principle, basically
because they are integral equations. The regularity of integral equations is higher, thus, leading
to a faster decay in the Fourier domain.

4 Understanding and Studying DNN Based on F-Principle

In this section, we review how the F-Principle gains understandings of over-parameterized
DNNs [122] and inspires the study of DNNs. First, we use a series of experiments to study
what kind of settings can lead to the low-frequency bias. Second, we utilize the F-Principle
to qualitatively and quantitatively study the generalization of DNNs. Third, we review the
frequency approach for studyingDNNsbeyond the F-Principle. Finally,we review algorithms
inspired by the F-Principle.

4.1 Empirical Study of Mechanisms Underlying Spectral Bias

4.1.1 Activation

The analysis in Sect. 3.1 shows the importance of the activation in the F-Principle. For most
activations, such as tanh and ReLU, they monotonically decay in the frequency domain.
Therefore, we can easily observe that the DNN training process follows the F-Principle, such
as the example in Fig. 2. We can also design an activation that does not monotonically decay
in the frequency domain but monotonically increases up to a high frequency, where we expect
to observe the frequency convergence order may flip up to a certain frequency. We use the
Ricker function with parameter a,

1

15a
π1/4

(

1 −
( x

a

)2
)

exp

(

−1

2

( x

a

)2
)

. (26)

With smaller a, the Ricker function decays from a higher frequency. We perform a similar
learning task and use the same setting as Fig. 2. As shown in Fig. 6, in the first row, when the
activation decays from a low frequency, we can clearly observe the low frequency converges
faster; however, in the second row, when the activation decays from a high frequency, we
cannot observe any frequency that converges faster, which is consistent with our analysis.

4.1.2 Frequency Weight in the Loss Function

The loss function form can affect the frequency convergence. For example, one can explicitly
impose a large weight on some specific frequency component to accelerate the convergence
of the frequency component. We consider two types of loss functions in learning the function
as in Fig. 2, one is the common mean squared loss Lnongrad, and the other is one with an extra
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Fig. 6 Ricker activation function. a = 0.3 for the first row and a = 0.1 for the second row

Fig. 7 The frequency convergence for networks with the loss functions Lnongrad and Lgrad

loss of gradient Lgrad,

Lnongrad =
n∑

i=1

( fθ (xi ) − f ∗(xi ))2/n, (27)

Lgrad = Lnongrad +
n∑

i=1

(∇x fθ (xi ) − ∇x f
∗(xi ))2/n. (28)

As shown in Fig. 7, the high frequency converges much faster in the case of the loss with
gradient information. The key reason is that, the Fourier transform of∇x fθ (xi ) is the product
of the transform of fθ (xi ) and frequency ξ , which is equivalent to adding more priority to
the higher frequency.

4.1.3 The Joint Effect of Activation and Loss

The analysis in Sect. 3.1 shows that the frequency convergence behavior is the joint effect of
activation and loss. A more detailed analysis is shown in (59). For common loss functions
and activation functions, the DNN training process that follows the F-Principle can be easily
observed. However, in some specific settings or tasks, such as solving PDEs where the loss
function often contains gradient information, the F-Principle may not hold.
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Fig. 8 DNN outputs with the Ricker activation function. a = 0.3 for the first row and a = 0.1 for the second
row. Same experiments as Fig. 6

4.2 DNN that Violates F-Principle Produces Oscillated Output

To examine the utility of the F-Principle, we compare DNNs outputs for two experiments in
Fig. 6. Note that the settings for the two examples in Fig. 6 are exactly the same except for the
hyper-parameter a in the Ricker activation function. For smaller a, the output of the Ricker
activation with small a is more oscillated than that of large a. Therefore, the initial output of
the network with small a, i.e., the one that follows the F-Principle, is smooth (Fig. 8a), while
the one with large a, i.e., the one that does not follow the F-Principle, is very oscillated (Fig.
8d). After training, the network that follows the F-Principle learns the training datawell in (b),
and the DNN output is smooth at test points in (c). However, for the one that does not follow
the F-Principle, the DNN can also learn the training data well in (e), but it is very oscillated
at test points in (f). It is also worth pointing out that the output of the network is always
oscillated at test points during this training. Apparently, such oscillated output usually leads
to bad generalization. This example shows the F-Principle is an important factor underlying
the good generalization of DNNs.

4.3 Strength andWeakness

As demonstrated in the Introduction part, if the implicit bias or characteristic of an algorithm
is consistent with the property of data, the algorithm generalizes well, otherwise not. By iden-
tifying the implicit bias of the DNNs in the F-Principle, we can have a better understanding
of the strength and the weakness of deep learning, as demonstrated by Xu et al. [114] in the
following.

DNNs often generalize well for real problems [122] but poorly for problems like fitting a
parity function [87, 98] despite excellent training accuracy for all problems. The following
demonstrates a qualitative difference between these two types of problems through Fourier
analysis and uses the F-Principle to provide an explanation for different generalization per-
formances of DNNs.
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Fig. 9 Fourier analysis for different generalization abilities. The plot is the amplitude of the Fourier coefficient
against frequency k. The red dots are for the training dataset, the green line is for the whole dataset, and the
blue dashed line is for an output of well-trained DNN on the input of the whole dataset. For (c), d = 10. The
training data are 200 randomly selected points. The settings of (a) and (b) are the same as the ones in Fig. 4.
For (c), we use a tanh-DNN with widths 10-500-100-1, learning rate 0.000 5 under full batch-size training
by Adam optimizer. The parameters of the DNN are initialized by a Gaussian distribution with mean 0 and
standard deviation 0.05. Reprinted from Xu et al. [114]

Using the projection method in Sect. 2.2.1, one can obtain frequencies along the examined
directions. For illustration, the Fourier transform of all MNIST/CIFAR10 data along the first
principle component is shown in Figs. 9a, b for MNIST/CIFAR10, respectively. The Fourier
transform of the training data (red dot) well overlaps with that of the total data (green) at the
dominant low frequencies. As expected, the Fourier transform of the DNN output with bias
of the low frequency, evaluated on both training and test data, also overlaps with the true
Fourier transform at the low-frequency part. Due to the negligible high frequency of these
problems, the DNNs generalize well.

However, DNNs generalize badly for high-frequency functions as follows. For the parity
function f (x) = ∏d

j=1 x j defined on � = {−1, 1}d , its Fourier transform is f̂ (k) =
1
2d
∑

x∈�

∏d
j=1 x je

−i2π k·x = (−i)d
∏d

j=1 sin 2π k j . Clearly, for k ∈ [− 1
4 ,

1
4 ]d , the power

of the parity function concentrates at k ∈ {− 1
4 ,

1
4 }d and vanishes as k → 0, as illustrated in

Fig. 9c for the direction of 1d . Given a randomly sampled training dataset S ⊂ �with s points,
the nonuniform Fourier transform on S is computed as f̂ S(k) = 1

s

∑
x∈S

∏d
j=1 x je

−i2π k·x .
As shown in Fig. 9c, f̂ (k) and f̂ S(k) significantly differ at low frequencies, caused by
the well-known aliasing effect. Based on the F-Principle, as demonstrated in Fig. 9c, these
artificial low-frequency components will be first captured to explain the training samples,
whereas the high-frequency components will be compromised by DNN, leading to a bad
generalization performance as observed in experiments.

The F-Principle implicates that among all the functions that can fit the training data, aDNN
is implicitly biased during the training towards a functionwithmore power at low frequencies,
which is consistent with the implication of the equivalent optimization problem (22). The
distribution of power in theFourier domain of above two types of problems exhibits significant
differences, which results in different generalization performances of DNNs according to the
F-Principle.

Ma et al. [80] show that the F-Principle may be a general mechanism behind the slow
deterioration phenomenon in the training of DNNs, where the effect of the “double descent”
is washed out. Sharma and Ross [99] utilize the low-frequency bias of DNNs to study effec-
tiveness of an iris recognition DNN. Chen et al. [20] show that under the same computational
budget, aMuffNet is a better universal approximator for functions containing high-frequency
components, thus, better for mobile deep learning. Zhu et al. [130] utilize the F-Principle
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Fig. 10 Effect of early-stopping on contaminated data. The training set and the test set consist of 300 and
6 000 data points evenly sampled in [−10, 10], respectively. a The sampled values of the test set (red square
dashed line) and DNN outputs (blue solid line) at the turning step. b Loss functions for the training set (green
stars) and test set (red dots) at different recording steps. The green dashed line is drawn at the turning step,
where the best generalization performance is achieved. c The Fourier transform of the true data for the training
set (red) and test set (black), and the Fourier transform of the DNN output for the training set (green), and test
set (magenta) at the turning step. Reprinted from Xu et al. [115]

to help understand why high frequency is a limit when DNNs are used to solve the spectral
deconvolution problem. Chakrabarty [19] utilizes the idea of the F-Principle to study the
spectral bias of the deep image prior.

4.4 Early Stopping

When the training data are contaminated by noise, the early-stopping method is usually
applied to avoid overfitting in practice [72]. By the F-Principle, early-stopping can help avoid
fitting the noisy high-frequency components. Thus, it naturally leads to a well-generalized
solution. Xu et al. [115] use the following example for illustration.

As shown in Fig. 10a, the data are sampled from a function with noise. The DNN can well
fit the sampled training set as the loss function of the training set decreases to a very small
value (green stars in Fig. 10b). However, the loss function of the test set first decreases and
then increases (red dots in Fig. 10b). In Fig. 10c, the Fourier transform for the training data
(red) and the test data (black) only overlaps around the dominant low-frequency components.
Clearly, the high-frequency components of the training set are severely contaminated bynoise.
Around the turning step—where the best generalization performance is achieved, indicated
by the green dashed line in Fig. 10b—the DNN output is a smooth function (blue line in
Fig. 10a) in the spatial domain and well captures the dominant peak in the frequency domain
(Fig. 10c). After that, the loss function of the test set increases as DNN start to capture the
higher frequency noise (red dots in Fig. 10b). These phenomena conform with our analysis
that early-stopping can lead to a better generalization performance of DNNs as it helps avoid
fitting the noisy high-frequency components of the training set.

As a low-frequency function is more robust w.r.t. input than a high-frequency function,
the early-stopping can also enhance the robustness of the DNN. This effect is consistent with
the study by Li et al. [66], which shows that a two-layer DNN, trained only on the input
weight and early stopped, can reconstruct the true labels from noisy data.

4.5 Quantitative Understanding in NTK Regime

The static minimization problem (22) defines an FP-energy Eγ (h) = ∫
γ −2|ĥ|2dξ that

quantifies the preference of the LFP model among all its steady states. Since γ (ξ)−2 is an
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Fig. 11 Using mean squared loss and gradient descent to find the solution of a polynomial interpolation with
order 11 and 12 equispaced points

increasing function, say γ (ξ)−2 = ‖ξ‖d+1, the FP-energy
∫ ‖ξ‖d+1|ĥ|2dξ amplifies the high

frequencies while diminishing low frequencies. By minimizing Eγ (h), problem (22) gives
rise to a low frequency fitting, instead of an arbitrary one, of training data. By intuition, if
target f ∗ is indeed the low frequency dominant, then h∞ likely well approximates f ∗ at
unobserved positions.

To theoretically demonstrate above intuition, Luo et al. [77] derive the following, an
estimate of the generalization error of h∞ using the a priori error estimate technique [32].
Since h(x) = f ∗(x) is a viable steady state, Eγ (h∞) � Eγ ( f ∗) by the minimization
problem. Using this constraint on h∞, one can obtain that, with probability of at least 1− δ,

Ex(h∞(x) − f ∗(x))2 � Eγ ( f ∗)√
n

Cγ

(
2 + 4

√
2 log(4/δ)

)
, (29)

where Cγ is a constant depending on γ . Error reduces with more training data as expected
with a decay rate 1/

√
n similar to the Monte-Carlo method. Importantly, because Eγ ( f ∗)

strongly amplifies high frequencies of f ∗, the more high-frequency components the target
function f ∗ possesses, the worse h∞ may generalize.

Note that the error estimate is also consistent with another result [2] published at similar
time. Arora et al. [2] prove that the generalization error of the two-layer ReLU network in
the NTK regime found by GD is at most

√
2Y T(K ∗)−1Y

n
, (30)

where K ∗ is defined in (15), Y ∈ R
n is the labels of n training data. If the data Y is dominated

more by the component of the eigen-vector that has a small eigen-value, then, the above
quantity is larger. Since in the NTK regime the eigen-vector that has a small eigen-value
corresponds to a higher frequency, the error bound in (29) is larger, consistent with (30).

4.6 Frequency Perspective for Understanding Experimental Phenomena

Compression phase Xu et al. [115] explain the compression phase in the information plane,
proposed by Shwartz-Ziv and Tishby [101], by the F-Principle as follows. The entropy or
information quantifies the possibility of output values, i.e., more possible output values lead
to a higher entropy. In learning a discretized function, the DNN first fits the continuous
low-frequency components of the discretized function, i.e., large entropy state. Then, the
DNN output tends to be discretized as the network gradually captures the high-frequency
components, i.e., entropy decreasing. Thus, the compression phase appears in the information
plane.
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Increasing complexity The F-Principle also explains the increasing complexity of the DNN
output during the training. For common small initialization, the initial output of a DNN is
often close to zero. The F-Principle indicates that the output of DNN contains higher and
higher frequencies during the training. As frequency is a natural concept to characterize the
complexity of a function, the F-Principle indicates that the complexity of the DNN output
increases during the training. This increasing complexity of the DNN output during training
is consistent with previous studies and subsequent works [3, 42, 49, 59, 60, 86].
Deep frequency principle Xu and Zhou [116] propose a deep F-Principle to understand an
effect of depth in accelerating the training. For a DNN, the effective target function of the l-th
hidden layer can be understood in the following way. Its input is the output of the (l − 1)-th
layer. The part from the l-th layer is to learn themapping from the output of the (l−1)-th layer
to the true labels. Therefore, the effective target function of the l-th hidden layer consists of
the output of the (l − 1)-th layer and the true labels. Xu and Zhou [116] empirically find a
deep F-Principle: the effective target function for deeper hidden layer biases towards lower
frequency during the training. Due to the F-Principle, this empirical study provides a rationale
for understanding why depth can accelerate the training.
Frequency approach Camuto et al. [17] show that the effect of Gaussian noise injections
to each hidden layer output is equivalent to a penalty of high-frequency components in the
Fourier domain. Rabinowitz [91], and Deng and Zhang [25] use the F-Principle as one of
typical phenomena to study the difference between the normal learning and themeta-learning.
Chen et al. [21] show the F-Principle holds in a broad learning system. Schwarz et al. [97]
study the frequency bias of generative models.

4.7 Inspiring the Design of Algorithm

In addition to scientific computing reviewed in Sect. 5.4, to accelerate the convergence of
high-frequency, different approaches are developed in various applications. Some examples
are listed in the following.

Agarwal et al. [1] and Liang et al. [71] also design different types of activation func-
tions. Campo et al. [16] use a frequency filter to help reduce the interdependency between
the low frequency and the (harder to learn) high-frequency components of the state-action
value approximation to achieve better results in reinforcement learning. Several works use
multi-scale input by projecting data into a high-dimensional space with a set of sinusoids in
efficiently representing complex 3D objects and scenes [8, 43, 46, 50, 84, 88, 90, 106, 109,
112, 129]. Tancik et al. [105] use meta-learning to obtain a good initialization for fast and
effective image restoration. Several works utilize frequency-aware information to improve
the quality of high-frequency details of images generated by neural networks [22, 56, 69,
118]. Xi et al. [110] argue that the performance improvement in low-resolution image classi-
fication is affected by the inconsistency of learning between low-frequency components and
high-frequency components, and Xi et al. [110] propose a network structure to overcome this
inconsistent issue.

The F-Principle shows that DNNs quickly learn the low-frequency part, which is often
dominated in the real data and more robust. At the early stage, the DNN is similar to a
linear model [51, 60]. Some works take advantage of DNN at early training stage to save
training computation cost. The original lottery ticket network [38] requires a full training of
DNN,which has a very high computational cost.Most computation is used to capture the high
frequencywhile the high frequencymay be not important inmany cases. You et al. [119] show
that a small but critical subnetwork emerges at the early training stage (Early-Bird ticket),
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and the performance of training this small subnetwork with the same initialization is similar
to the training of the full network, thus, saving significant energy for training networks. Fu et
al. [39, 40] utilize the robustness of the low frequency by applying the low-precision for early
training stage to save computational cost without sacrificing the generalization performance.

5 F-Principle for DNN-BasedMethods for Solving PDEs

Recently, DNN-based approaches have been actively explored for a variety of scientific
computing problems, e.g., solving high-dimensional partial differential equations [29, 31, 37,
44, 47, 48, 61, 104] and molecular dynamics (MD) simulations [45]. For solving PDEs, one
can use DNNs to parameterize the solution of a specific PDE [26, 30, 93, 120] or the operator
of a type of PDE [37, 70, 74, 123]. An overview of using DNN to solve high-dimensional
PDEs can be found in E et al. [29]. We would focus on the former approach.

The F-Principle is an important feature of DNN-based algorithms. In this section, we will
first review the frequency convergence difference between the DNN-based algorithm and
conventional methods, i.e., iterative methods and finite-element methods. Then, we rational-
ize their difference and understand the F-Principle from the iterative perspective. Finally, we
review algorithms developed for overcoming the challenge of the high frequency in DNN-
based methods.
5.1 Parameterize the Solution of a PDE

For intuitive illustration, we use Poisson’s equation as an example, which has broad applica-
tions in mechanical engineering and theoretical physics [36],

− �u(x) = g(x), x ∈ � (31)

with the boundary condition

u(x) = g̃(x), x ∈ ∂�. (32)

One can use a neural network u(x; θ), where θ is the set of DNN parameters. A deep Ritz
approach [34] utilizes the following variational problem:

u∗ = argmin
v

J (v), (33)

where the solution of the above minimization problem can be proved to be the solution of
the Poisson’s problem and the energy functional is defined as

J (v) =
∫

�

(
1

2
|∇v|2 + V (r)v2

)

dr −
∫

�

g(r)v(r)dr �
∫

�

E(v(r))dr . (34)

In numerical computing, the solution of the Poisson’s problem is parameterized by a DNN
u(x; θ), the target functional is discretized in the form of the first part of (35). The Dirichlet
boundary condition is treated as an L2 penalty and discretized as the second part of (35).
That is,

L ritz(θ) = 1

n

∑

x∈S
(|∇u(x; θ)|2/2 − g(x)u(x; θ)) + β

ñ

∑

x∈S̃
(u(x; θ) − g̃(x))2, (35)

where S is the sample set from �, n is the sample size, and ñ indicates the sample set from
∂�. The second penalty term with a weight β is to enforce the boundary condition.
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A more direct method, also known as the physics-informed neural network (PINN) or
least squared method, use the following loss function. In an alternative approach, one can
simply uses the loss function of the Least Squared Error (LSE)

LLSE(θ) = 1

n

∑

x∈S
(�u(x; θ) + g(x))2 + β

ñ

∑

x∈S̃
(u(x; θ) − g̃(x))2. (36)

To see the learning accuracy, one can compute the distance between u(x; θ) and utrue,

MSE(u(x; θ), utrue(x)) = 1

n + ñ

∑

x∈S∪S̃

(u(x; θ) − utrue(x))2. (37)

5.2 Difference from Conventional Algorithms

5.2.1 Iterative Methods

A stark difference between a DNN-based solver and the Jacobi method during the train-
ing/iteration is that DNNs learn the solution from low- to high-frequencies [114], while the
Jacobi method learns the solution from high to low frequencies. Therefore, DNNs would
suffer from the high-frequency curse.
Jacobi method Before we show the difference between a DNN-based solver and the Jacobi
method, we illustrate the procedure of the Jacobi method.

Consider a 1-D Poisson’s equation:

−�u(x) = g(x), x ∈ � � (−1, 1), (38)

u(−1) = u(1) = 0. (39)

[−1, 1] is uniformly discretized into n + 1 points with the grid size h = 2/n. The Poisson’s
equation in (38) can be solved by the central difference scheme,

− �ui = −ui+1 − 2ui + ui−1

h2
= g(xi ), i = 1, 2, · · · , n, (40)

resulting a linear system

Au = g, (41)

where

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

...
...

0 0 · · · 0 −1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(n−1)×(n−1)

, (42)

u =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

u1
u2
...

un−2

un−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, g = h2

⎛

⎜
⎜
⎜
⎜
⎜
⎝

g1
g2
...

gn−2

gn−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, xi = 2
i

n
. (43)
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A class of methods to solve this linear system is iterative schemes, for example, the Jacobi
method. Let A = D − L − U , where D is the diagonal of A, and L and U are the strictly
lower and upper triangular parts of −A, respectively. Then, we obtain

u = D−1(L + U)u + D−1g. (44)

At step t ∈ N, the Jacobi iteration reads as

ut+1 = D−1(L + U)ut + D−1g. (45)

We perform the standard error analysis of the above iteration process. Denote u∗ as the
true value obtained by directly performing inverse of A in (41). The error at step t + 1 is
et+1 = ut+1 − u∗. Then, et+1 = RJ et , where RJ = D−1(L + U). The converging speed
of et is determined by the eigen-values of RJ , that is,

λk = λk(RJ ) = cos
k π

n
, k = 1, 2, · · · , n − 1, (46)

and the corresponding eigen-vector vk’s entry is

vk,i = sin
ik π

n
, i = 1, 2, · · · , n − 1. (47)

Therefore, we can write

et =
n−1∑

k=1

αt
kvk, (48)

where αt
k can be understood as the magnitude of et in the direction of vk . Then,

et+1 =
n−1∑

k=1

αt
kRJvk =

n−1∑

k=1

αt
kλkvk, (49)

αt+1
k = λkα

t
k .

Therefore, the converging rate of et in the direction of vk is controlled by λk . Since

cos
k π

n
= − cos

(n − k)π

n
, (50)

the frequencies k and (n − k) are closely related and converge with the same rate. Consider
the frequency k < n/2, λk is larger for the lower frequency. Therefore, the lower frequency
converges more slowly in the Jacobi method.
Numerical experiments Xu et al. [114] consider the example with g(x) = sin(x) +
4 sin(4x) − 8 sin(8x) + 16 sin(24x) such that the exact solution uref (x) has several high
frequencies. After training with the Ritz loss, the DNN output well matches the analytical
solution uref . For each frequency k, we define the relative error as

�F (k) = |ûθ (k) − ûtrue(k)|/ûtrue(k).
Focusing on the convergence of three peaks (inset of Fig. 12a) in the Fourier transform of uref ,
as shown in Fig. 12b, low frequencies converge faster than high frequencies as predicted by
the F-Principle. For comparison, Xu et al. [114] also use the Jacobi method to solve problem
(38). High frequencies converge faster in the Jacobi method, as shown in Fig. 12c.
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Fig. 12 Poisson’s equation. a uref (x). Inset: |ûref (k)| as a function of frequency. Frequencies peaks are
marked with black dots. b, c �F (k) computed on the inputs of training data at different epochs for the
selected frequencies for DNN (b) and Jacobi (c). d ‖h−uref‖∞ at different running time. Green stars indicate
‖h − uref‖∞ using DNN alone. The dashed lines indicate ‖h − uref‖∞ for the Jacobi method with different
colors indicating initialization by different timing of the DNN training. Xu et al. [114] use a DNN with widths
1-4000-500-400-1 and full batch training by Adam optimizer [62]. The learning rate is 0.000 5. β is 10. The
parameters of the DNN are initialized following a Gaussian distribution with mean 0 and standard deviation
0.02. Reprinted from Xu et al. [114]

As a demonstration, Xu et al. [114] further propose that DNN can be combined with
conventional numerical schemes to accelerate the convergence of low frequencies for com-
putational problems. First, Xu et al. [114] solve the Poisson’s equation in (38) by DNN with
M optimization steps (or epochs). Then, Xu et al. [114] use the Jacobi method with the new
initial data for the further iterations. A proper choice of M is indicated by the initial point of
orange dashed line, in which low frequencies are quickly captured by the DNN, followed by
fast convergence in high frequencies of the Jacobi method. A similar idea of using DNN as
the initial guess for conventional methods is proved to be effective in later works [52].

This example illustrates a cautionary tale that, although DNNs have a clear advantage,
usingDNNs alonemay not be the best option because of its limitation of the slow convergence
at high frequencies. Taking advantage of both DNNs and conventional methods to design
faster schemes could be a promising direction in scientific computing problems.

5.2.2 Ritz-Galerkin (R-G) Method

Wang et al. [108] study the difference between R-G method and DNN methods, reviewed as
follows.
R-G method We briefly introduce the R-G method [12]. For problem (38), we construct a
functional

J (u) = 1

2
a(u, u) − (g, u), (51)

where

a(u, v) =
∫

�

∇u(x)∇v(x)dx, (g, v) =
∫

�

g(x)v(x)dx.

The variational form of problem (38) is the following:

find u ∈ H1
0 (�), s.t. J (u) = min

v∈H1
0 (�)

J (v). (52)

The weak form of (52) is to find u ∈ H1
0 (�) such that

a(u, v) = (g, v), ∀ v ∈ H1
0 (�). (53)
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Fig. 13 The finite-element basis function in one dimension and two dimensions. Reprinted from Wang et al.
[108]

The problem (38) is the strong form if the solution u ∈ H2
0 (�). To numerically solve (53), we

now introduce the finite-dimensional spaceUh to approximate the infinite-dimensional space
H1
0 (�). LetUh ⊂ H1

0 (�)be a sub-spacewith a sequenceof basis functions {φ1, φ2, · · · , φm}.
The numerical solution uh ∈ Uh that we will find can be represented as

uh =
m∑

k=1

ckφk, (54)

where the coefficients {ci } are the unknown values that we need to solve. Replacing H1
0 (�)

by Uh , both problems (52) and (53) can be transformed to solve the following system:

m∑

k=1

cka(φk, φ j ) = (g, φ j ), j = 1, 2, · · · ,m. (55)

From (55), we can calculate ci , and then obtain the numerical solution uh . We usually call
(55) the R-G equation.

For different types of basis functions, theR-Gmethod canbe divided into thefinite-element
method (FEM) and spectral method (SM) and so on. If the basis functions {φi (x)} are local,
namely, they are compactly supported, this method is usually taken as the FEM. Assume that
� is a polygon, andwe divide it into finite-element gridTh by simplex, h = maxτ∈Th diam(τ ).
A typical finite-element basis is the linear hat basis function, satisfying

φk(x j ) = δk j , x j ∈ Nh, (56)

where Nh stands for the set of the nodes of grid Th . The schematic diagram of the basis
functions in one dimension and two dimensions is shown in Fig. 13. On the other hand, if we
choose the global basis function such as the Fourier basis or Legendre basis [100], we call
the R-G method spectral method.

The error estimate theory of the R-G method has been well established. Under suitable
assumption on the regularity of the solution, the linear finite-element solution uh has the
following error estimate:

‖u − uh‖1 � C1h‖u‖2,
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where the constantC1 is independent of the grid size h. The spectral method has the following
error estimate:

‖u − uh‖ � C2

ms
,

where C2 is a constant and the exponent s depends only on the regularity (smoothness) of
the solution u. If u is smooth enough and satisfies certain boundary conditions, the spectral
method has the spectral accuracy.
Different learning results DNNs with the ReLU activation function can be proved to be
equivalent with a finite element method in the sense of approximation [47]. However, the
learning results have a stark difference. To investigate the difference, we utilize a control
experiment, that is, solving PDEs given n sample points and controlling the number of bases
in the R-G method and the number of neurons in DNN equal m. Although not realistic in
the common usage of the R-G method, we choose the case m > n because the two methods
are completely different in such a situation especially when m → ∞. Then, replacing the
integral on the r.h.s. of (55) with the form of the MC integral formula, we obtain

m∑

k=1

cka(φk, φ j ) = 1

n

n∑

i=1

g(xi )φ j (xi ), j = 1, 2, · · · ,m. (57)

We consider the 2-D case
{−�u(x) = g(x), x ∈ (0, 1)2,
u(x) = 0, x ∈ ∂(0, 1)2,

where x = (x, y) and we know the values of g at n = 52 points sampled from the function
g(x) := g(x, y) = 2π2 sin(π x) sin(π y). For a large m, Figs. 14a, b plot the R-G solutions
with the Legendre basis and piecewise linear basis function. It can be seen that the numerical
solution is a functionwith the strong singularity.However, Figs. 14c, d show that the two-layer
DNN solutions are stable without singularity for large m.

The smooth solution of DNN, especially when the neuron number is large, can be under-
stood through the low-frequency bias, such as the analysis shown in theLFP theory. This helps
understand the wide application of DNN in solving PDEs. For example, the low-frequency
bias intuitively explains why DNN solves a shock wave by a smooth solution in Michoski et
al. [83].

For the R-G method, the following theorem explains why there is singularity in the 2-D
case when m is large.

Theorem 1 When m → ∞, the numerical method (57) is solving the problem
⎧
⎪⎨

⎪⎩

−�u(x) = 1

n

n∑

i=1

δ(x − xi )g(xi ), x ∈ �,

u(x) = 0, x ∈ ∂�,

(58)

where δ(x) represents the Dirac delta function.

This theorem shows that if we consider an over-parameterized FEM, it solves the Green’s
function of the PDE. In Poisson’s problem, the 2-D Green’s function has a singularity, thus,
leading to a singular solution. However, for DNN, due to the F-Principle of the low-frequency
preference, the solution is always relatively smooth. Although there exists equivalence
between the DNN-based algorithm and conventional methods for solving PDEs in the sense
of approximation, it is important to take the implicit bias when analyzing the learning results
of DNNs.
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Fig. 14 R-G solutions (a, b) and two-layer DNN solutions (c, d). Reprinted from Wang et al. [108]

5.3 Understanding F-Principle by Comparing the Differential Operator and the
Integrator Operator

In this part, inspired by the analysis in E et al. [33], we use a very non-rigorous derivation to
intuitively understand why DNN follows the F-Principle while the Jacobi method does not
and shows a connection between these two methods.

Consider the elliptic equation in the one dimension:
⎧
⎨

⎩

Lu := −�u = g, g ∈ L2([0, 1]),
u(0) = 0,
u(1) = 0.

Suppose that g is sufficiently smooth and thus u is smooth, N >> 1, h = 1/N , xi = ih =
i
N , i = 0, · · · , N .

Let

v =

⎛

⎜
⎜
⎜
⎝

v0
v1
...

vN

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

u(0)
u(h)
...

u(1)

⎞

⎟
⎟
⎟
⎠

,

v0 = vN = 0. Then we have

(ANv)i = 1

h2
(−vi−1 + 2vi − vi+1) = gi , i = 1, · · · , N − 1,

ANv = 1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

2 −1
−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

v1
v2
...

vN−1

⎞

⎟
⎟
⎟
⎠

,

k = 1, · · · , N − 1 (mode), i = 1, · · · , N − 1, which can be extended to i = 0, N by
considering the boundary conditions.

Define (wk)i := sin ik π
N , (wk)0 := (wk)N := 0,

(ANwk)i = 1

h2
(− (wk)i−1 + 2 (wk)i − (wk)i+1

)

= 1

h2

(

− sin
(i − 1)k π

N
+ 2 sin

ik π

N
− sin

(i + 1)k π

N

)
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= 1

h2

(

−2 sin
ik π

N
cos

k π

N
+ 2 sin

ik π

N

)

= (wk)i
2

h2

(

1 − cos
k π

N

)

= 4

h2
sin2

k π

2N
(ωk)i i = 1, · · · , N − 1.

Thus, we have

ANwk = λkwk,

where λk = 4
h2

sin2 k π
N , k = 1, · · · , N − 1.

As the analysis in the Jacobi iteration in Sect. 5.2.1, for the differential operator AN , the
lower frequency converges more slowly. This can also be revealed by optimizing v through
a mean square error as follows. Define e = v − u∗ as the error on the discretized grid points,
and

RA := 1

2N
‖ANv − g‖2 .

By the gradient-descent flow, we have

d

dt
v = − ∇vRA

= − 1

N
AN (ANv − g) ,

then,

d

dt
e = − 1

N
A2
N e.

Similarly, we obtain that the low frequency converges more slowly.
Then, we consider u(x; θ) be the NN function parameterized by θ to approximate the

PDE solution. The loss function is similarly defined:

RN : = 1

2N

N−1∑

i=1

((ANu) (xi , θ) − g (xi ))
2 + 1

2
u (x0, θ)2 + 1

2
u (xN , θ)2

= 1

2N
‖ANu − g‖2 + 1

2
u (x0, θ)2 + 1

2
u (xN , θ)2 .

The gradient flow w.r.t. θ is

θ̇ = −∇θ RN (θ).
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Then, the evolution of u(x, θ) is

d

dt
u (xi , θ) = − ∇θu (xi , θ) · ∇θ RN (θ)

= − ∇θu (xi , θ)

⎡

⎣ 1

N

N−1∑

j=1

((
A2
Nu
)
j − (AN g) j

)
∇θu

(
x j , θ

)

+u (x0, θ) ∇θu (x0, θ) + u (xN , θ) ∇θu (xN , θ)

⎤

⎦

= − 1

N

N−1∑

j=1

K
(
xi , x j

) ((
A2
Nu
)
j − (AN g) j

)

− K (xi , x0) u (x0) − K (xi , xN ) u (xN ) ,

where K := (
K
(
xi , x j

))
(N−1)×(N−1) = (∇θu (xi , θ) · ∇θu

(
x j , θ

))
(N−1)×(N−1) is the spec-

trum defined in Sect. 3.2.1.
We similarly define the error as e := u − u∗. Then,

d

dt
e (xi , θ) = − 1

N

[
N−1∑

i=1

K
(
xi , x j

) (
A2
Ne
)
j

−NK (xi , x0) e0 − NK (xi , xN ) eN

]

,

where K = (
K
(
xi , x j

))
, i, j = 0, · · · , N . Define ē = (e0, · · · , eN ) and consider the

augmented matrix:

ĀN v̄ = 1

h2

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C
2 −1

−1 2 −1

−1
. . .

. . .

. . .
. . . −1
−1 2

C

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

v0
v1
...

vN

⎞

⎟
⎟
⎟
⎠

,

where C is to be determined. For j = 1, · · · , N − 1, Ā2
N ē
∣
∣
j = A2

N e
∣
∣
j , for j = 0,

Ā2
N ē
∣
∣
0 =

(
C

h2

)2

e0 = Ne0 ⇔ C

h2
= √

N ,

C = h2
1√
h

= h3/2.

Taking together, we have

d

dt
ē = − 1

N
K Ā2

N ē. (59)

Although for the differential operator (derivative w.r.t. input), the lower frequency mode
converges more slowly, for the integral operator (loss consists of the summation w.r.t. input),
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i.e., spectrum K , the lower frequencymode (see Sect. 3.2) converges faster. Therefore, there is
a competition between K and AN , which is the competition between integral and differential
operators (also see analysis in E et al. [33]). The effect of the neural network can also be
understood as a preconditioner. Another easy way to understand why the differential operator
enables faster convergence of the high frequency is that the Fourier transform of ∇u(x) is
ξ û(ξ), that is, a higher frequency would have a higher weight in the loss function.

5.4 AlgorithmDesign to Overcome the Challenge of High Frequency

The F-Principle provides valuable theoretical insights of the limit of DNN-based algorithms,
that is, the challenge of the high-frequency [114].

To overcome the challenge of the high frequency in DNN-based algorithms, a series of
methods are proposed. Some approaches are reviewed as follows.

Learning Fourier coefficients PhaseDNN [15] converts the high-frequency component
of the data downward to a low-frequency spectrum for learning, and then converts the learned
one back to the original high frequency. Another way to understand PhaseDNN is to expand
the target function by a Fourier series, and neural networks are used to learn the coefficients.
Peng et al. [89] call such a method as Prior Dictionary-based Physics-Informed Neural
Networks (PD-PINNs). However, due to the fact that number of Fourier terms exponentially
increases with the dimension, the PhaseDNN would suffer from the curse of dimensionality.

Multi-scale DNN To alleviate the high-frequency difficulty for the high-dimensional
problem, a Multi-scale DNN (MscaleDNN) method, originally proposed in Cai and Xu
[15] and completed in Liu et al. [73], considers the frequency conversion only in the radial
direction. The conversion in the frequency space can be done by a scaling, which is equivalent
to an inverse scaling in the spatial space. Therefore, we can use the following ansatz to fit
high-frequency data:

f (x) ∼
M∑

i=1

fθni (αi x). (60)

This can be easily implemented by multiplying the input to different neurons in the first
hidden layer with different constant scalings. Figure 15 shows two examples of MscaleDNN
structures.
MscaleDNN-1 For the first kind, a MscaleDNN takes the following form:

fθ (x) = W [L−1]σ ◦ (· · · (W [1]σ ◦ (K � (W [0]x) + b[0]) + b[1]) · · · ) + b[L−1], (61)

where x ∈ R
d , W [l] ∈ R

ml+1×ml , ml is the neuron number of the l-th hidden layer, m0 = d ,
b[l] ∈ R

ml+1 , σ is a scalar function and “◦” means entry-wise operation, � is the Hadamard
product and

K = (a1, a1, · · · , a1︸ ︷︷ ︸
1st part

, a2, · · · , ai−1, ai , ai , · · · , ai︸ ︷︷ ︸
i th part

, · · · , aN , aN · · · , aN︸ ︷︷ ︸
N th part

)T, (62)

where K ∈ R
m1 , ai = i or ai = 2i−1. This structure is called Multi-scale DNN-1

(MscaleDNN-1).
MscaleDNN-2 A second kind of multi-scale DNN is given in Fig. 15b, as a sum of N
subnetworks, in which each scale input goes through a subnetwork. InMscaleDNN-2, weight
matrices from W [1] to W [L−1] are block diagonal. Again, the scale coefficient ai = i or
ai = 2i−1.
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Fig. 15 Two MscaleDNN structures. Reprinted from Liu et al. [73]

Wang et al. [107] and Li et al. [67, 68] further use MscaleDNN to solve more multi-scale
problems. Another key factor in practical experiments, without too much understanding, is
the effect of the activation function. Liu et al. [73] use activation functions with compact
support. Huang et al. [53] and Li et al. [68] adopt the MscaleDNN structure and use the sine
and cosine functions as the activation function with different scalings for neurons in the first
hidden layer, obtaining better results in solving PDEs.

Fourier feature network Tancik et al. [106] map input x to

γ (x) = [a1 cos(2π bT1 x), a1 cos(2π bT1 x), · · · , am cos(2π bTmx), am cos(2π bTmx)]

for imaging reconstruction tasks. γ (x) is then used as the input to the neural network. Wang
et al. [109] extend the Fourier feature network for the PDE problem, where the selection for
bi is from different ranges. Mildenhall et al. [85] successfully apply this multi-scale Fourier
feature input in the neural radiance fields for view synthesis.

Adaptive activation functions Jagtap et al. [55] replace the activation function σ(x) by
a σ(μax), where μ is a fixed scale factor with μ � 1 and a is a trainable variable shared
for all neurons. Liang et al. [71] employ several basic functions and their learnable linear
combination to construct neuron-wise data-driven activation functions.

Large weight for high frequency Biland et al. [9] explicitly impose high frequencies
with the higher priority in the loss function to accelerate the simulation of fluid dynamics.
However, the Fourier transform for the high-dimensional function is computational costly.

6 Anti-F-Principle

The F-Principle is rather common in training DNNs. As we have understood the F-Principle
to a certain extent, it is also easy to construct examples in which the F-Principle does not
hold, i.e., the anti-F-Principle. As analyzed in Sect. 3.2.3, if the priority of the high frequency
is too high, the optimization problem would lead to trivial solutions. Examples in the over-
parameterized finite-element method in Fig. 14 is also an example. In this section, we review
some anti-F-Principle examples.
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6.1 Derivative w. r. t. Input

Imposing high priority on high frequency can alleviate the effect of the F-Principle and
sometimes a phenomenon that follows the anti-F-Principle can be observed. Similar to Sect.
5.3, if the loss function contains the gradient of theDNNoutput w.r.t. the input, it is equivalent
to impose higher frequency with higher weight in the loss function. Then, whether there
exists an F-Principle depends on the competition between the activation regularity and the
loss function. If the loss function endorsesmore priority for the high frequency to compensate
for the low-priority induced by the activation function, an anti-F-Principle emerges. Since
gradient often exists in solving PDEs, the anti-F-Principle can hold in solving a PDE by
designing a loss with high-order derivatives. Some analysis and numerical experiments can
also be found in Lu et al. [75] and E et al. [33].

6.2 LargeWeights

Another way to observe the phenomenon that follows the anti-F-Principle is using large
values for network weights. As shown in the analysis of the ideal setting in Sect. 3.1, large
weights alleviate the dominance of low-frequency in (9). In addition, large values would also
cause large fluctuation of DNN output at initialization (experiments can be seen in Xu et al.
[115]), the amplitude term in (9) may endorse high frequency larger priority, leading to an
anti-F-Principle, which is also studied by Yang and Salman [117]. In the NTK regime [54],
Zhang et al. [127] theoretically show that the fluctuation of the initial output would be kept
in the learned function after training.

7 Conclusion

The F-Principle is very general and important for training DNNs. It serves as a basic principle
to understand DNNs and inspires the design of DNNs. As a good starting point, the F-
Principle leads to more interesting studies for a better understanding of DNNs. For example,
the empirical study also finds the F-Principle holds in the non-gradient training process [81].
It remains unclear how to build a theory of the F-Principle for general DNNs with arbitrary
sample distribution and how to study the generalization error. The precise description of the
F-Principle is only done in the NTK regime [54]. It is not clear whether it is possible to obtain
a similarly precise description in the mean-field regime described by PDEs [82, 94, 103].
The Fourier analysis can be used to study DNNs from other perspectives, such as the effect
of different image frequencies on the learning results.

As a general implicit bias, the F-Principle is insufficient to characterize the exact details
of the training process of DNNs beyond NTK. To study the nonlinear behavior of DNNs in
detail, it is important to study DNNs from other perspectives, such as the loss landscape, the
effect of width and depth, the effect of initialization, etc. For example, Zhang et al. [127] and
Luo et al. [79] have studied how initialization affects the implicit bias of DNNs and Luo et
al. [79] draw a phase diagram for wide two-layer ReLU DNNs [79]. Zhang et al. [124, 128]
show an embedding principle that the loss landscape of a DNN “contains” all the critical
points of all the narrower DNNs.
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