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A B S T R A C T

Fuel chemistry represents a typical complex system involving thousands of intermediate species and elementary
reactions. Traditional mechanism reduction methods, such as sensitivity analysis and graph-based approaches,
fail to explore global correlations of the sub-systems, thereby compromising their efficiency and accuracy.
A novel machine learning-based approach called deep mechanism reduction (DeePMR) has been developed
to address this issue. The current method transforms mechanism reduction into an optimization problem
in the combinatorial space of chemical species while mitigating the curse of dimensionality inherent in
the high-dimensional space. We propose an iterative sampling–training–predicting strategy combining deep
neural networks with genetic algorithms to learn the landscape of the combinatorial space and locate the
targeted subspace. Applying DeePMR to fuel chemistry mechanisms has led to much more compact mechanisms
than traditional methods, including directed relation graph (DRG) or path flux analysis (PFA) methods, with
three to four orders of magnitude acceleration in numerical simulation. In addition, reduced mechanisms by
DeePMR indicate a principal-satellite formulation for constructing chemical reaction mechanisms, providing
a straightforward yet effective alternative to hierarchy-based construction methods. The DeePMR method
provides a general framework for model reduction across various fields.
1. Novelty and significance statement

We propose a deep mechanism reduction (DeePMR) method, trans-
forming the mechanism reduction of a chemical reaction kinetics sys-
tem into an optimization problem in the combinatorial space of species.
DeePMR is a top-down scheme that utilizes a sampling-training-
predicting strategy by combining deep neural networks with genetic
algorithms. This allows it to explore high-dimensional combinato-
rial space and global species correlations effectively and efficiently.
Applying the DeePMR method to fuel chemistry mechanisms yields
state-of-the-art reduction, proving a stronger reduction ability than
traditional methods.

2. Introduction

Accurate and efficient modeling of chemical reactions within dy-
namic systems represents a substantial challenge, from combustion in
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aerospace engines [1], chemical vapor deposition [2], greenhouse gas
and pollutants formation in the atmosphere [3] to organic reactions
in the interstellar medium [4]. The complexity arises from the vast
intermediate products and elementary reactions [5–10] as well as its
coupling with the spatiotemporal system [11–13]. A prevailing solution
is to develop a full-scope mechanism of all available species and
reactions’ properties, complete with their thermal, transportive, and
kinetic parameters [14–17] via a hierarchy-based approach, i.e., the
modeling of simple molecules serves as building blocks for increasingly
complex compounds through the sequential addition of new intermedi-
ate species and elementary reactions [18]. A typical reaction network
development history is illustrated in Fig. 1 based on a gasoline chem-
istry mechanism [19]. While ab initio calculations and high-quality
experiments are useful for certain molecules and reactions [20–22], a
significant portion of the parameters is still approximated heuristically.
The uncertainty resulting from estimated parameters sometimes, if
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Fig. 1. A history of hierarchy kinetic mechanisms for gasoline surrogate (LLNL) [19]. Circles represent species, and gray dots represent reactions. Species are colored based on
the mechanism that includes the species first and are sized based on vortex degree.
not often, goes unnoticed until revealed by later contradictory experi-
ments. Recent studies have suggested that reducing the mechanism’s
dimensionality can enhance the prediction generalization capability
and avoid the occurrence of local minima during optimization [23].
In addition, the cost grows superlinearly with the mechanism size due
to the nonlinearity and stiffness. As a result, it is necessary to develop
a reduced model with satisfying accuracy and efficiency.

Previous mechanism reduction methods for chemical reaction sys-
tems include sensitivity analysis [24,25], chemical lumping method
[26,27], computational singularity perturbation [28,29], principal com-
ponent analysis (PCA) [30,31], time-scale analysis [32,33], manifold-
type method [34], and graph-based methods [35–37]. This field has
seen a proliferation of interdisciplinary methods. However, previous
methods usually rely on timescale separation assumption (e.g., CSP
methods), linear approximation (e.g., principal component analysis),
or hypothetical error propagation mode inside reaction network [38].
To what extent those assumptions are necessary to perform model
reduction is an open question. For example, the directed relation graph
(DRG) method models the conversion flux in the reaction network. The
flux conservation helps improve the reduced mechanism’s accuracy,
but sometimes the reduced model can still have accurate performance
without conversion flux conservation. Fig. 2 shows a specific counter-
example where the graph-based methods fail to perform the reduction.
Based on the error estimation methods mentioned above, there is little
difference among the impacts of 𝐵𝑖’s on the flux to the target species 𝐶.
As a result, 𝐵𝑖 will either be removed or retained altogether. In contrast,
it is readily seen that removing 𝐵2 and 𝐵3 will not affect the reactant’s
consumption rate and product’s creation rate, which is an acceptable
reduction. Therefore, it is challenging for graph-based methods to
evaluate to what extent the path flux can accurately indicate the overall
performance of the reduced mechanisms and where the assumption
might fail. It will be beneficial if we can design a top-down scheme that
prioritizes the overall performance of the reduced mechanism without
strong assumptions of the complex kinetics.

Machine learning has shown tremendous success in various fields,
such as deep learning [39] in predicting protein structure [40], nat-
ural language processing [41] etc. A common key feature of these
challenging tasks is high dimensionality. Machine learning has also
shown potential in combustion research [42,43], such as chemical
reaction network construction and analysis [44], generating detailed
chemistry mechanism [21], optimizing the parameters in the chemistry
mechanism [45–47] and learning surrogate models for stiff chemical
processes [48–52].

This study introduces a novel approach called deep mechanism
reduction (DeePMR). DeePMR focuses on constructing a mapping func-
tion between reduced mechanisms and their overall performance using
2

Fig. 2. An illustration for a reaction pathway. 𝐴, 𝐵𝑖, 𝐶 are the reactant, intermediate
species, and product, respectively. The inter-conversion rates among 𝐵1, 𝐵2, and 𝐵3
are faster than other reaction rates. Consequently, 𝐵𝑖 has similar concentrations and
contributions to the target species 𝐶.

deep neural networks, so that DeePMR can gradually eliminate species
and associated reactions while ensuring accurate functional preserva-
tion. The input to the network is a reduced mechanism representation,
modeled as stochastic Boolean networks inspired by systems biol-
ogy [53]. The output is the performance prediction for a group of
benchmark tests. For such high-dimensional mappings, DNN effec-
tively overcomes the ’curse of dimensionality’ problem compared with
conventional approximation techniques, such as polynomial fitting. In
addition, the data sampling, DNN training, and new mechanism la-
beling proceed iteratively, which enables DNN to explore combinatory
space effectively, resulting in a state-of-the-art reduction method.

The DeePMR method has been applied to both alkane-fueled and
alcohol-fueled mechanisms, reducing them to mechanisms comprised
of approximately 20 to 40 species, including a shared principal species
and a limited number of intermediate species,1 i.e., a principal-satellite
formulation (PSF). This approach offers a straightforward yet effective
alternative to hierarchy-based construction methods. Even though the
current work focuses on fuel chemistry, the DeePMR method constitutes
a general framework for model reduction problems across various
research fields.

3. Methods

The DeePMR method proposed in this work simplifies a detailed
mechanism with 𝑁𝑠 species by removing unnecessary species to find

1 The reduced mechanisms can be found at https://github.com/intelligent-
algorithm-team/intelligent-combustion

https://github.com/intelligent-algorithm-team/intelligent-combustion
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Fig. 3. Schematic diagram of the DeePMR method. (a) Flowchart of the DeePMR method. A large population of the child I is generated from parents through perturbation and
then is screened by fitness function I (neural network). The fitness labels of the retained child II are calculated through the fitness function 2 (Cantera). Child II with high fitness
will be used as the parents for the new iteration. In addition, all child II and their fitness labels are also used to reinforce the neural network training dataset to enhance the
predictive ability of the neural network. (b) Perturb the complex chemical reaction mechanism. The perturbation means the random removal of some species and the reactions
they participate in. The reduced mechanism’s ignition, extinction, and propagation characteristics are calculated by numerical simulation (Denoted as 𝖸𝗂). (c) The neural networks
are used to train and predict the ignition, extinction, and propagation characteristics. The entire process has a one-to-one correspondence with (b).
an optimally reduced mechanism, which retains high accuracy on
𝑀 benchmark quantities, such as ignition time delay (IDT), equilib-
rium flame temperature, laminar flame speed, and extinction curve in
perfectly stirred reactors (PSR) with various initial conditions (temper-
ature, pressure, equivalence ratio). The following are detailed descrip-
tions for each part in the DeePMR method:

State vector To represent a reduced mechanism, an 𝑁𝑠-dimensional
Boolean vector 𝒙 ∈ {0, 1}𝑁𝑠 is employed, with each entry indicating the
status of a species: ‘‘1’’ signifies remaining, while ‘‘0’’ denotes removing.
Once certain species are removed, their related reactions are reduced.

Perturbation In the perturbation process, we randomly remove 𝑘
species to generate more compact reduced mechanisms, where 𝑘 is a
hyper-parameter. In this work, we set 𝑘 ∈ [20, 40] for start and 𝑘 ∈ [2, 6]
for final iteration.

Deep neural network (DNN) The deep neural network directly takes
the state vector 𝒙 as input, and the output 𝒚 ∶= {𝑌𝑖}𝑀𝑖=1 is the pre-
diction of accuracy on M benchmark quantities. For different types
3

of benchmarks, we adopt separate DNNs to handle. We use a net of
ReLU activation function and three hidden layers with 3000, 2000, and
1000 nodes, respectively. This data-driven approach can potentially
extract high-order relations among species in order to predict interested
quantities accurately. Compared with the graph-based method, which
could only utilize low-order correlations, the deep neural network
(DNN) could be more efficient for identifying important species groups.

DNN screening We adopt DNN to select promising mechanism candi-
dates. More specifically, for ignition delay time, the sample needs to
satisfy |log10 𝜏

predict
reduced∕𝜏

Cantera
detailed | < max{0.3 ∗ 0.98𝑖, 0.18}, with 𝜏predictreduced and

𝜏Canteradetailed representing the IDTs by DNN prediction of the reduced mecha-
nism and Cantera computation of the detailed mechanism, respectively,
and 𝑖 being the number of iterations. In each iteration, the screening
will continue until we collect enough child samples. In this work, the
child sample number is set to be 25,600.

Dataset The newly-reduced mechanisms and their labels constitute
the dataset of the current iteration, denoted as 𝑆 = {(𝒙𝑗 , 𝒚𝑗 )}𝑗 . This
dataset serves two purposes: to update the candidate pool for the next
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Fig. 4. Iterative sampling process. (a) Top: the error of the best-reduced mechanism (right) and its species number (left) in each iteration; The red solid line is the sum of average
relative errors for ignition, extinction, and propagation for the reduced mechanism; The blue-shaded area is the range of species numbers for the reduced mechanism in each
iteration. Middle: the retaining ratio of all species in counted iterations; The retaining ratio for the 𝗃-th species is defined as the number of reduced mechanisms containing the 𝗃-th
species divided by the number of all sampled mechanisms. Bottom: The left and right sides of the error distribution graph are the distribution of 𝜏𝖢𝖺𝗇𝗍𝖾𝗋𝖺

𝗋𝖾𝖽𝗎𝖼𝖾𝖽
− 𝜏𝖢𝖺𝗇𝗍𝖾𝗋𝖺

𝖽𝖾𝗍𝖺𝗂𝗅𝖾𝖽
and 𝜏𝗉𝗋𝖾𝖽𝗂𝖼𝗍

𝗋𝖾𝖽𝗎𝖼𝖾𝖽
− 𝜏𝖢𝖺𝗇𝗍𝖾𝗋𝖺

𝖽𝖾𝗍𝖺𝗂𝗅𝖾𝖽

respectively; The bottom part is the species-reaction graph for the iso-octane mechanism of the three states; Circles represent species. Species are colored based on class and sized
based on vortex degree. Light gray nodes are the species that were removed from the detailed mechanism. (b) The training process of neural networks. New sparser data are
continuously fed to the neural network during the iterative training process, such as the training points marked by asterisks. (c) The comparison between DNN prediction and
Cantera results of a reduced mechanism.
iteration and to enlarge the training set for the DNN. The top 5% best
mechanisms of the dataset will be selected as the parent samples for
the next iteration. The performance indicator used here is the average
relative error of benchmark quantities.

DNN training As mentioned above, the neural network utilizes training
set 𝑆. The optimizer is Stochastic Gradient Descent (SGD) with batch
size 128. The mean square loss function is defined as

Loss = 1
𝑁

𝑁
∑

𝑗=1
‖𝒚𝑗 − �̃�𝑗‖22,

where �̃�𝑗 is the DNN prediction of 𝑗th reduced mechanism and 𝑁 is the
size of dataset.

Simulation As illustrated in Fig. 3b, the benchmark quantities are
computed through the open-source software package Cantera, denoted
as 𝒚 ∶= {Y }𝑀 ∈ R𝑀 .
4

𝑗 𝑖𝑗 𝑖=1
The method originates from a simple idea, that is brutal force
search. Without strategic searching and DNN’s efficient screening, the
current formulation becomes a typical brutal force search problem.
After exhaustively enumerating every possibility with and without
certain species and using Cantera to evaluate, it is guaranteed to obtain
an optimal reduced mechanism. However, the key challenge is the
prohibitive cost to enumerate. For the LLNL n-heptane mechanism
(648 species), the total number of all possible reduced mechanisms is
2648 ≈ 1𝐸195. It is our current strategy that compresses the number
of the mechanism candidates from 1𝐸195 to approximately 1𝐸9. Com-
pared with a classical genetic algorithm method, the current DeePMR
method includes boarder distributions of the mechanism candidates.
This modification is due to the repeated observations when we obtain
a good reduced mechanism by removing several species from poor
reduced mechanisms. For further improving efficiency, DNN plays a
critical role in fast screening. The DNN screening only takes a few
minutes to complete. In the end, the total calls of Cantera are reduced
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Fig. 5. Performance of iso-octane skeletal mechanism with 46 species generated by DeePMR. (a) Comparison of the average ignition error relation with the number of remaining
species between the DRG method and the DeePMR simplification process. The DRG result comes from [37]. (b) Comparison of iso-octane reduced mechanism generated by
DRG [35], DRGEP [37], DRGASA [54,55], DRGEPSA [56], and DeePMR methods. All experimental results are from [56]. (c, d) Comparison of laminar flame speed under 1 atm
up to 40 atm between detailed mechanism and skeletal mechanism at 500 K in (c) and 298 K in (d). (e) Computation cost comparison in different reactors. We compare the
simulation time between the detailed mechanism and the reduced mechanism in various reactors under different initial temperature, pressure, and equivalence ratio conditions.
The colors red, green, and blue represent the equivalence ratios of 0.5, 1, and 1.5, respectively. The histogram shows the average simulation time. All simulations are done using
Intel Xeon ICX Platinum 8358. (f) Comparison of extinction curve under 500 K and different pressure and equivalence ratio. (g) Comparison of ignition delay time under different

initial conditions.
to 1𝐸5. Considering the training and inference cost of the DNN is only
several minutes each time, the speedup ratio provided by the DNN
is huge. From another perspective, the high-dimensional combinatory
space of reduced mechanism, which is also known as the landscape
of the mapping function, is extremely complex. DNN is a well-known
to effectively approximate such high-dimensional function. Therefore,
the actual role of DNN is not simply to accelerate screening. Instead,
we use DNN to characterize the landscape of the high-dimensional
combinatory space. At the same time, the genetic algorithm helps
the DNN collect high-quality candidate data in the neighborhood of
optimally reduced mechanisms. The underlying intuition is that if good
reduced mechanisms cluster in a subspace, it is very likely that a more
refined mechanism can be found nearby. In summary, the optimal
solution comes from a better description of the high-dimensional space
using DNN instead of combining several good candidates.

4. Results

4.1. Mechanism reduction for various fuels

In this section, we demonstrate the efficacy of the DeePMR method
(see the workflow in Fig. 3) in reducing detailed mechanisms while
5

maintaining state-of-the-art accuracy. As an example, we consider the
detailed iso-octane mechanism [57], which contains 857 species and
6480 reactions. A wide range of autoignition initial conditions are
covered, including temperatures ranging from 600–1700 K, pressures
from 1–40 atm, and equivalence ratios from 0.5–1.5.

Firstly, we study the reduction process of the iso-octane mech-
anism as the sampling iteration proceeds. In Fig. 4a top, with the
iteration increasing, the number of kept species constantly decreases
significantly while the average relative error of benchmark quantities
only slightly increases. In every ten consecutive iterations (one colored
block), we compute the retaining ratio distribution and IDT relative
error distribution. The retaining ratio for the 𝑗th species is defined as
the number of reduced mechanisms containing the 𝑗th species divided
by the number of all sampled mechanisms in the counted iterations.
As shown in Fig. 4a middle, more and more species stably have higher
retaining ratio than others, i.e., important species are gradually found,
such as fuel, O2, CO2, and H2O. To validate the accuracy of DNN, we
examine distributions of the IDT relative error for 𝜏Canterareduced − 𝜏Canteradetailed and
𝜏predictreduced − 𝜏Canteradetailed in each block. As shown in Fig. 4a bottom, these two
distributions are symmetric after certain iterations, a consequence of
the good prediction accuracy of DNN. The end-to-end approach enables
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Fig. 6. Performance of n-heptane skeletal mechanism with 41 species generated by DeePMR. (a) Comparison of Laminar flame speed under 1 atm up to 50 atm and 298 K among
detailed mechanism and skeletal mechanism. (b) Comparison of ignition delay time under different initial conditions. (c) Comparison of extinction curve under 298 K and different
pressure and equivalence ratio. (d) Comparison of extinction curve under 500 K and different pressure and equivalence ratio. (e) Comparison of laminar flame speed under 1
atm and 298 K among skeletal mechanisms from Jacobian-aided DRGEP method and TSA-reduced skeletal mechanisms from various DRGEP-based methods. (f) Computation cost
comparison among different mechanisms.
the DNN to use high-order correlations for good predictions potentially.
We further show that the training and the test losses consistently
decrease to small values in Fig. 4b. As an example, Fig. 4c shows that
the IDT of a reduced mechanism computed by Cantera (red dot) or
accurately predicted by DNN (green circle) are both consistent with the
one of the detailed mechanisms computed by Cantera. At the bottom
of Fig. 4, two snapshots of reduction are shown.

Then, we report that the DeePMR method has stronger simplifica-
tion ability and stability compared with traditional DRG methods. As
shown in Fig. 5a, the mechanism obtained by the DeePMR method has
a smaller average error than DRG while retaining the same number
of components. As shown in Fig. 5b, our DeePMR method obtains a
reduced skeletal mechanism with 46 species and 301 reactions, far less
than those of DRG, DRGASA, DRGEP, DRGEPSA [56] while keeping
good accuracy. The following comparison experiments are performed
to show good accuracy of the reduced mechanism: the laminar flame
speed with initial conditions of pressure from 1 atm to 40 atm at 500 K
in Fig. 5c and at 298 K in Fig. 5d, the extinction curve at 500 K
in Fig. 5f and ignition delay time in Fig. 5g under different initial
pressures (1, 5, 40 atm) and equivalence ratios (0.5, 1, 1.5). As the
number of species decreases significantly, the detailed mechanism can
save the computation cost of about two orders of magnitude compared
with the detailed mechanism in various reactors under different initial
temperature, pressure, and equivalence ratio conditions (Fig. 5e).

The same strategy is used for an n-heptane mechanism reduction
task. Fig. 6 shows the performance of the reduced mechanism with
41 species generated by DeePMR. The laminar flame speed, ignition
delay time, and extinction curves comparison are shown for initial
pressure 𝑃 = 1, 20 and 50 atm in Fig. 6a–d, respectively. Fig. 6e
compares the DeePMR’s result of the laminar flame speeds under 1
atm and 298 K with other skeletal mechanisms using Jacobian-aided
DRGEP method (Dijkstra_JAC in [61]) and subsequent TSA-reduced
skeletal models from various DRGEP-based methods [61] (All reference
data for other methods come from [62]). The comparison shows the
DeePMR method can reduce the detailed mechanisms into a much
more compact size but maintain equally high accuracy. Compared
6

with the detailed mechanism, the simplified mechanism achieves two
orders of magnitude computational acceleration (Fig. 6f). It is worth
mentioning that less time cost is not equivalent to weaker stiffness.
The reduced mechanisms obtained can exhibit potentially significant
numerical stiffness at some low-temperature conditions. For example, a
smaller timestep size is required in some autoignition simulations using
a reduced iso-octane model compared with the detailed mechanisms.
(full details can be found in the supplementary material).

As demonstrated in Table 1, the performance of the DeePMR method
is further verified through a number of mechanism reduction tasks.
For example, in addition to the iso-octane mechanism mentioned
above, we also reduced the 648-species LLNL Gasoline surrogate mech-
anism [19] and obtained the C1 ∼ C7 alkanes fueled combustion
reduced mechanisms; Moreover, the 284-species LLNL butanol isomers
mechanism [59] fueled by methanol, ethanol or butanol, 156-species
n-propanol mechanism [60], and 341-species JKL n-butane mecha-
nism [58] are reduced to about 20 species by DeePMR, which fully
demonstrates that DeePMR is capable of reducing the combustion
mechanism for various fuels. The results of reduced mechanisms for
C1 ∼ C6 alkanes fueled LLNL mechanism will be further discussed in
Section 4.2.

4.2. Reconcile the hierarchical construction of mechanism and the
principal-satellite formulation

The development of chemical kinetic mechanisms for hydrocarbon
fuels is typically carried out using a hierarchical formulation. In this
approach, larger fuel molecules inherit submechanisms from smaller
molecules and incorporate additional elementary reactions specific to
the targeted fuel. Consequently, the size of the detailed mechanism
grows with increasing carbon number and complexity of the fuel. For
instance, a mechanism for n-hexadecane (C16H34) encompasses a total
of 8130 reversible elementary reactions among 2116 chemical species,
as reported by [63].

Although the hierarchical approach has been proven useful for mod-

eling various fuels, our research indicates a more effective alternative
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Table 1
Reduction results using the DeePMR method for GMIT iso-octane [57], LLNL Gasoline surrogate mechanism [19], JKL 𝖢𝟢 ∼ 𝖢𝟦 Skeletal [58], LLNL butanol isomers [59], Propanol
ombustion [60] with various fuels. Ignition delay time and equilibrium flame temperature are common indicators for all mechanisms. The 𝖳𝗂𝗇𝗂, 𝖯𝗂𝗇𝗂, and 𝗂𝗇𝗂 are the initial ignition
onditions. The abbreviations ‘‘D’’ and ‘‘R’’ after ‘‘ns/nr’’ represent detailed and reduced mechanisms, respectively. The tick symbol ‘‘✓’’ indicates that this indicator is considered
n the reduction process, which means the reduced mechanism is applicable to this reactor. The ‘‘Error’’ is the sum of the mean relative errors of all considered indicators.
Mechanism Fuel Tini (K) Pini (atm) Φini PSR Flame ns/nr (D) ns/nr (R) Err

GMIT iso-octane iC8H18 600–1800 1–40 0.5–1.5 ✓ ✓ 857/6480 46/301 14.3%

LLNL Gasoline
surrogate

nC7H16 650–1800 1–50 0.5–2 ✓ ✓

648/4846

41/292 19.1%
nC6H14 1200–1700 1–20 0.5–2 24/162 14.7%
nC5H12 1200–1700 1–20 0.5–2 24/165 17.8%
nC4H10 1200–1700 1–20 0.5–2 21/138 13.3%
C3H8 1200–1700 1–20 0.5–2 20/132 18.7%
C2H6 1200–1700 1–20 0.5–2 19/120 10.2%
CH4 1200–1700 1–20 0.5–2 20/146 11.3%

LLNL butanol
isomers

CH3OH 1250–1700 1–40 0.5–1.5 ✓

284/1900
20/98 3.2%

C2H5OH 1250–1700 1–40 0.5–1.5 ✓ 22/90 5.6%
nC4H9OH 1250–1700 1–40 0.5–1.5 ✓ 24/100 10.7%

Propanol
combustion

nC3H7OH 1250–1700 1–40 0.5–1.5 ✓ 156/1414 24/169 7.5%

JKL C0 ∼ C4
Skeletal

nC4H10 1000–1400 1–40 0.5–2 341/1977 27/149 14.8%
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for constructing skeletal fuel mechanisms. As the current method re-
mains elementary reaction rates the same as the detailed one, a detailed
mechanism may start from the skeletal reaction pathways instead of
adopting a hierarchical formulation. Specifically, we present reduced
mechanisms for alkanes and alcohols constrained by ignition delay time
(IDT) and equilibrium flame temperature, and reduced mechanisms for
alcohols further constrained by the extinction curve in PSRs. Fig. 7a.
provides detailed information on these mechanisms. The horizontal
row of points shows the inclusion relationship between the mechanism
and species. Fig. 7b. demonstrates that these reduced mechanisms
accurately predict IDTs in various initial conditions. Notably, as shown
in the left panel of Fig. 7a, a group of species shared by all reduced
mechanisms is identified as the principal species, while others are
contingent on the targeted fuel type so we call them satellite species,
that is,

Principal-Satellite Formulation (PSF): a mechanism consists of
wo parts: one is the principal species shared by all hydrocarbons, and
he satellite species represents reaction pathways from the fuel to the
rincipal part.

This principal-satellite formulation is a conceptual analogy with
ity development, as different fuels share a principal city for mod-
ling high-temperature reactions and possess satellite cities for fuel-
pecific decomposition and oxidation reactions. In detail, these reduced
echanisms have two characteristics:

• Principal species: alkane-fueled mechanisms all have 13 common
species: H2, O2, H2O, CO2, O, H, OH, H2O2, HO2, CO, HCO,
CH3, and CH2𝖮. We call them the alkane-principal species. And
alcohol-fueled mechanisms have only two more common species:
CH3𝖮 and CH2OH.

• Satellite species: apart from the principal species, the remaining
species in the reduced mechanisms can be attributed to the fuel,
corresponding free radicals formed through dehydrogenation re-
actions, and small molecular species generated through various
bond dissociation pathways.

Even though the PSF proves valid for the current selections of fuels,
t remains an open question whether this structure can be preserved
n a more general case. An even more challenging question is how
o automatically identify satellite species for different fuels without
erforming model reduction tediously. In this regard, besides the area’s
ong-time endeavors in chemical kinetic constructions, some pioneering
ork, including the Hy-Chem model [17], and reaction mechanism
7

enerator (RMG) [64], can be helpful for future investigations.
. Conclusions

This study presents the DeePMR method, which utilizes machine
earning techniques to explore high-order correlations among detailed
hemical combustion mechanisms within a vast sample space. Through
he application of DeePMR, we can extract skeletal mechanisms that
ccurately reproduce essential benchmark quantities while retaining a
inimal number of species at the state-of-the-art level. These skele-

al mechanisms serve as effective models for comprehending the dy-
amics of combustion. Furthermore, the DeePMR method introduces
principal-satellite formulation (PSF) for constructing mechanisms,
hich offers an alternative to the traditional hierarchy-based approach.
verall, the DeePMR method proposes a machine-learning-based strat-
gy for simplifying complex systems while preserving the accuracy of
rucial benchmark quantities.
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Fig. 7. The retaining species analysis and performance of various mechanisms. (a) Retaining species analysis of the LLNL reduced mechanisms fueled by 𝖢1 to 𝖢6 alkanes and the
reduced alcohol mechanisms fueled by 𝖢1 to 𝖢4 alcohols. The common inert gas 𝖭2 is not shown in this figure. Beyond that, all mechanisms share 13 common species, 𝖧2, 𝖮2,
𝖧2𝖮, 𝖢𝖮2, 𝖮, 𝖧, 𝖮𝖧, 𝖧2𝖮2, 𝖧𝖮2, 𝖢𝖮, 𝖧𝖢𝖮, 𝖢𝖧3, and 𝖢𝖧2𝖮, which we name principal species. Reduced alcohol mechanisms have an additional two common species, 𝖢𝖧3𝖮 and
𝖢𝖧2𝖮𝖧. (b) Performance of various mechanisms in ignition test.
Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.combustflame.2023.113286.
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