Embedding Principle of Loss Landscape of Deep Neural Networks

张耀宇

Institute of Natural Sciences&School of Mathematical Sciences Shanghai Jiao Tong University

机器学习联合研讨计划, c2sml.cn

Outline

- Embedding Principle: theory and insights
- 8 Relevance to optimization, generalization and pruning
- 4 Conclusions and discussion

A .

→ ∃ →

Outline

Introduction

- 2 Embedding Principle: theory and insights
- 3 Relevance to optimization, generalization and pruning
- 4 Conclusions and discussion
- 5 Appendix

A (10) A (10)

Loss landscape

$$R_{\mathcal{S}}(\boldsymbol{\theta}) = \frac{1}{n} \sum_{i=1}^{n} \ell(\boldsymbol{f}(\boldsymbol{x}_i, \boldsymbol{\theta}), \boldsymbol{y}_i)$$

Model: $f(\mathbf{x}_i, \boldsymbol{\theta})$ Data: $S = \{(\mathbf{x}_i, \mathbf{y}_i\}_{i=1}^n$ Loss: $\ell(\cdot, \cdot)$

< ロ > < 同 > < 回 > < 回 >

DNN loss landscape is complex

(a) Loss surface on FashionMNIST dataset

(b) Loss surface on CIFAR10 dataset

I. Skorokhodov, M. Burtsev, 2019

A (10) A (10)

Role of loss landscape in conventional ML

张耀宇 (SJTU)

э

Role of loss landscape in deep learning

张耀宇 (SJTU)

э

<ロ> <問> <問> < 回> < 回> 、

Global minima degenerate for overparameterized NN

Yaim Cooper, 2018: **Global minima** is usually a M - n dimensional submanifold of \mathbb{R}^M , M is number of model parameters, n is number of data points.

Question1: (degeneracy) properties of other critical points?

Intriguing experimental phenomenon in width

< 6 b

Training process of wide NN beyond NTK

10/44

Implicit regularization towards "simple" critical points

Question2: Are there "simple" critical points in wide NN? "simple": output function can be realized by a narrow NN

	OTT
い 旅 確 于 (5110

- **A**

Outline

Introduction

2 Embedding Principle: theory and insights

3 Relevance to optimization, generalization and pruning

4 Conclusions and discussion

5 Appendix

A (10) A (10) A (10)

Embedding Principle

Embedding Principle

The loss landscape of any network "contains" all critical points of all narrower networks.

 $R_{\mathcal{S}}(\theta_{\text{wide}})$ "contain" θ_{narr}^{c} : $\exists \theta_{\text{wide}}^{c}$, s.t. $f_{\theta_{\text{narr}}^{c}} = f_{\theta_{\text{wide}}^{c}}$.

Reference

Yaoyu Zhang*, Zhongwang Zhang, Tao Luo, Zhi-Qin John Xu*, Embedding Principle of Loss Landscape of Deep Neural Networks. arXiv:2105.14573, 2021. (accepted by NeurIPS 2021 as spotlight)

< 回 > < 回 > < 回 > -

Answer to Question2

Question2: Are there "simple" critical points in wide NN? **Answer:** Yes!

Embedding Principle¹

The loss landscape of any network "contains" all critical points of all narrower networks.

 $R_{S}(\theta_{\text{wide}})$ "contain" $\theta_{\text{narr}}^{\text{c}}$: $\exists \theta_{\text{wide}}^{\text{c}}$, s.t. $f_{\theta_{\text{narr}}^{\text{c}}} = f_{\theta_{\text{wide}}^{\text{c}}}$.

¹Zhang*, Zhang, Luo, Xu*, Embedding Principle of Loss Landscape of Deep Neural Networks. arXiv:2105.14573, 2021.

张耀宇 (SJTU)

Example: critical points of width-3 tanh NN

< ロ > < 同 > < 回 > < 回 >

Key to our proof of embedding principle

Key: discovering critical embedding

Discover embedding $\mathcal{T} : \mathbb{R}^{M_{\text{narr}}} \to \mathbb{R}^{M_{\text{wide}}}$ such that for $\theta_{\text{wide}} = \mathcal{T}(\theta_{\text{narr}})$ (i) **output preserving:** $f_{\theta_{\text{narr}}} = f_{\theta_{\text{wide}}}$; (ii) **criticality preserving:** if θ_{narr} is a critical point, then θ_{wide} is also a critical point.

critical embedding exists \Rightarrow Embedding Principle

One-step embedding

One-step embedding $\mathcal{T}_{l.s}^{\alpha}$.

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

One-step embedding is critical embedding

Proposition (output and representation preserving)

For any point θ_{narr} of a DNN, a point θ_{wide} of a wider DNN obtained from θ_{narr} by **one-step embedding** satisfies

 $\textit{\textbf{f}}_{ heta_{\mathsf{narr}}}(\textit{\textbf{x}}) = \textit{\textbf{f}}_{ heta_{\mathsf{wide}}}(\textit{\textbf{x}}) ext{ for any } \textit{\textbf{x}}.$

定理 (criticality preserving)

For any critical point θ_{narr} of a DNN, a point θ_{wide} of a wider DNN obtained from θ_{narr} by **one-step embedding** is a critical point.

Remark: Obviously, **multi-step embedding**, i.e., composition of **one-step embedding**, is also critical embedding.

イロト 不得 トイヨト イヨト

Answer to Question1

Question1: (degeneracy) properties of other critical points?

定理 (informal)

(Under mild assumption) Any critical point θ^c of a DNN can be embedded to K-dimensional critical affine subspaces of a K-neuron wider DNN.

Critical points/submanifolds of width-3 tanh NN

A (10) A (10) A (10)

Numerical verification

empirical diagram of loss landscape

张耀宇 (SJTU)

- H - N

Insight to degeneracy supplement to Yaim's work

Overparameterization induced degeneracy [Yaim Cooper 2018] **Global minima** is (M - n)-D, M: #parameters, n: #data.

Embedding (neuron redundancy) induced degeneracy [our work] Global minima is at least $(m_{\text{total}} - m_{\text{min}})$ -D,

 m_{total} : #neurons, m_{min} : minimum #neurons for interpolation.

Outline

Introduction

2 Embedding Principle: theory and insights

8 Relevance to optimization, generalization and pruning

- 4 Conclusions and discussion
- 5 Appendix

A (10) A (10) A (10)

Potential relevance to optimization

Eigenvalues of Hessian of critical points. BLue: Negative, Red: Positive.

Hint

A local min of narrow NN may become strict saddle points in wider NNs.

Potential relevance to generalization

Hint

A NN may be guided by "simple" critical points towards a "simple" global min.

5世前年 千 (SILL
3 PC / P == 3 1	00.0

4 A N

Potential relavance to pruning

Width-400 ReLU NN pruned to width-58 NN near a critical point for MNIST.

Hint

NN training may experience "simple" critical points with great pruning potential.

Outline

Introduction

- 2 Embedding Principle: theory and insights
- 3 Relevance to optimization, generalization and pruning
- 4 Conclusions and discussion
- 5 Appendix

Embedding Principle sheds light to DNN loss landscape

Embedding Principle

The loss landscape of any network "contains" all critical points of all narrower networks.

Understanding

- Prevalence of "simple" critical points/affine subspaces
- Degeneracy \geq neuron redundancy

A new perspective

Different width DNN loss landscapes as a unified object.

A new tool

• Critical embedding is an important tool for the analysis of width effect regarding both optimization and generalization.

ヘロト ヘ回ト ヘヨト ヘヨト

Discussion: mysterious easy optimization of DNN

optimization difficulty

	(C 17	FΓ 1\
コレル車丁	001	10)

• • • • • • • • • • • • •

Discussion: mysterious easy optimization of DNN

Conjecture for the easy optimization mystery

Conjecture

Bad local min/critical point may be common, but truly bad one is rare.

定义 (Truly bad critical point)

Given any critical point θ , if $T\theta$ is not a strict saddle for any critical embedding T, then it is a truly bad critical point.

< 同 ト < 三 ト < 三 ト

Our lines of research

Frequency Principle (training dynamics&implicit bias)

- Experiment: (1) Xu, Zhang, Xiao, ICONIP 2019, (2) Xu, Zhang, Luo, Xiao, Ma, CiCP, 2020, (3) Xu, Zhou, AAAI 2020.
- Theory: (4) Zhang, Luo, Ma, Xu, CPL, 2021, (5) Luo, Ma, Xu, Zhang, CSIAM, 2021, (6) Luo, Ma, Xu, Zhang, arXiv, 2020, (7) Luo, Ma, Wang, Xu, Zhang, arXiv, 2020.

Phase diagram (training dynamics®ime)

(8) Zhang, Xu, Luo, Ma, MSML 2020, (9) Luo, Xu, Ma, Zhang, JMLR, 2021, (10) Xu, Zhou, Luo, Zhang, arXiv, 2021.

• Embedding Principle (loss landscape)

 (11) Zhang, Zhang, Tao Luo, Xu, arXiv:2105.14573, 2021 (accepted by NeurIPS 2021 as spotlight)

合作者(上海交通大学)

同事:许志钦(Zhi-Qin John Xu),罗涛(Tao Luo),马征(Zheng Ma) 学生:张众望(Zhongwang Zhang)

э

Outline

Introduction

- 2 Embedding Principle: theory and insights
- 3 Relevance to optimization, generalization and pruning
- 4 Conclusions and discussion

< 回 > < 三 > < 三 >

Settings and assumptions

Data

$$S = \{(\boldsymbol{x}_i, \boldsymbol{y}_i = \boldsymbol{f}^*(\boldsymbol{x}_i))\}_{i=1}^n, \, \boldsymbol{x}_i \in \mathbb{R}^d, \, \boldsymbol{y}_i \in \mathbb{R}^{d'}.$$

Neural network

a *L*-layer ($L \ge 2$) fully-connected DNN $f_{\theta}(\cdot)$. $\theta = \left(\theta|_1, \cdots, \theta|_L\right) = \left(W^{[1]}, b^{[1]}, \ldots, W^{[L]}, b^{[L]}\right) \in \operatorname{Tuple}_{\{m_l\}},$ $f_{\theta}^{[0]}(\boldsymbol{x}) = \boldsymbol{x},$ $f_{\theta}^{[l]}(\boldsymbol{x}) = \sigma(W^{[l]}, f_{\theta}^{[l-1]}(\boldsymbol{x}) + b^{[l]}), l \in [L-1],$ $f_{\theta}(\boldsymbol{x}) = f_{\theta}^{[L]}(\boldsymbol{x}) = W^{[L]}f_{\theta}^{[L-1]}(\boldsymbol{x}) + b^{[L]}.$

Activation function

 $\sigma(\cdot)$ is a (weakly) differentiable function.

Loss function

 $\begin{aligned} R_{\mathcal{S}}(\theta) &= \frac{1}{n} \sum_{i=1}^{n} \ell(\mathbf{f}(\mathbf{x}_{i}, \theta), \mathbf{f}^{*}(\mathbf{x}_{i})) = \mathbb{E}_{\mathcal{S}}\ell(\mathbf{f}(\mathbf{x}, \theta), \mathbf{f}^{*}(\mathbf{x})).\\ \ell(\cdot, \cdot) \text{ is a (weakly) differentiable function.} \end{aligned}$

Definitions

定义 (critical point)

Parameter vector θ is a critical point of the landscape of R_S if $\nabla_{\theta} R_S(\theta) = \mathbf{0}$.

定义 (critical submanifold/affine subspace)

A critical submanifold or affine subspace \mathcal{M} is a connected submanifold or affine subspace of the parameter space \mathbb{R}^M , such that each $\theta \in \mathcal{M}$ is a critical point of loss with the same loss value.

定义 (degree of degeneracy)

The degree of degeneracy of point θ in the landscape of R_S is the corank of Hessian matrix $\nabla_{\theta} \nabla_{\theta} R_S$, i.e., number of the zero eigenvalues.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

One-step embedding

One-step embedding: $\mathcal{T}_{l,s}^{\alpha}(\theta) = (\mathcal{T}_{l,s} + \alpha \mathcal{V}_{l,s})(\theta).$

$$\begin{aligned} \mathcal{T}_{l,s}(\boldsymbol{\theta})|_{k} &= \boldsymbol{\theta}|_{k} \text{ for } k \neq l, l+1, \quad \mathcal{T}_{l,s}(\boldsymbol{\theta})|_{l} = \left(\begin{bmatrix} \boldsymbol{W}^{[l]} \\ \boldsymbol{W}^{[l]}_{s,[1:m_{l-1}]} \end{bmatrix}, \begin{bmatrix} \boldsymbol{b}^{[l]} \\ \boldsymbol{b}^{[l]}_{s} \end{bmatrix} \right), \\ \mathcal{T}_{l,s}(\boldsymbol{\theta})|_{l+1} &= \left(\begin{bmatrix} \boldsymbol{W}^{[l+1]}, \boldsymbol{0} \end{bmatrix}, \boldsymbol{b}^{[l+1]} \right); \\ \mathcal{V}_{l,s}(\boldsymbol{\theta})|_{k} &= (\boldsymbol{0}, \boldsymbol{0}) \text{ for } k \neq l, l+1, \quad \mathcal{V}_{l,s}(\boldsymbol{\theta})|_{l} = (\boldsymbol{0}, \boldsymbol{0}), \\ \mathcal{V}_{l,s}(\boldsymbol{\theta})|_{l+1} &= \left(\begin{bmatrix} \boldsymbol{0}, -\boldsymbol{W}^{[l+1]}_{[1:m_{l+1}],s}, \boldsymbol{0}, \boldsymbol{W}^{[l+1]}_{[1:m_{l+1}],s} \end{bmatrix}, \boldsymbol{0} \right). \end{aligned}$$

Illustration

 \mathbb{S} : Illustration of $\mathcal{T}_{l,s}$, $\mathcal{V}_{l,s}$, and $\mathcal{T}_{l,s}^{\alpha}$.

2

イロト イヨト イヨト イヨト

Properties of one-step embedding

Remark on $\mathcal{T}_{l,s}^{\alpha}$

 $\begin{aligned} \mathcal{T}_{l,s}^{\alpha} : \{ \mathrm{Tuple}_{\{m_0,\cdots,m_L\}} | L > l, m_l \geq s \} \to \{ \mathrm{Tuple}_{\{m_0,\cdots,m_l+1,\cdots,m_L\}} | L > l, m_l \geq s + 1 \} \text{ is a linear injective operator.} \end{aligned}$

Proposition (output and representation preserving)

For any point θ_{narr} of a DNN, a point θ_{wide} of a wider DNN obtained from θ_{narr} by one-step embedding satisfies (i) $f_{\theta_{narr}}(\mathbf{x}) = f_{\theta_{wide}}(\mathbf{x})$ for any \mathbf{x} ; (ii) representation of the wide DNN at θ_{wide} , i.e., the set of all different response functions of neurons, is the same as representation of the narrow DNN at θ_{narr} .

定理 (criticality preserving)

For any critical point θ_{narr} of a DNN, a point θ_{wide} of a wider DNN obtained from θ_{narr} by one-step embedding is a critical point.

Sketch of proof

定义

$$f_{\theta}^{[l]}(\mathbf{x}) = \sigma(\mathbf{W}^{[l]} f_{\theta}^{[l-1]}(\mathbf{x}) + \mathbf{b}^{[l]}), \quad \mathbf{g}_{\theta}^{[l]} = \sigma^{(1)} \left(\mathbf{W}^{[l]} f_{\theta}^{[l-1]} + \mathbf{b}^{[l]} \right),$$

$$\mathbf{z}_{\theta}^{[l]} = \nabla_{\mathbf{f}_{\theta}^{[l]}} \ell(\mathbf{f}_{\theta}, \mathbf{f}^{*}), \quad \mathbf{z}_{\theta}^{[l]} = (\mathbf{W}^{[l+1]})^{\mathsf{T}} \mathbf{z}_{\theta}^{[l+1]} \circ \mathbf{g}_{\theta}^{[l+1]}.$$

Gradient of loss with respect to network parameters of each layer can be computed as follows

$$\nabla_{\boldsymbol{W}^{[l']}} R_{\mathcal{S}}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{W}^{[l']}} \mathbb{E}_{\mathcal{S}} \ell(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{f}^{*}(\boldsymbol{x})) = \mathbb{E}_{\mathcal{S}} \left(\boldsymbol{z}_{\boldsymbol{\theta}}^{[l']} \circ \boldsymbol{g}_{\boldsymbol{\theta}}^{[l']} (\boldsymbol{f}_{\boldsymbol{\theta}}^{[l'-1]})^{\mathsf{T}} \right),$$

$$\nabla_{\boldsymbol{b}^{[l']}} R_{\mathcal{S}}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{b}^{[l]}} \mathbb{E}_{\mathcal{S}} \ell(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{f}^{*}(\boldsymbol{x})) = \mathbb{E}_{\mathcal{S}} (\boldsymbol{z}_{\boldsymbol{\theta}}^{[l']} \circ \boldsymbol{g}_{\boldsymbol{\theta}}^{[l']}).$$

A > + > + > + >

Effect of one-step embedding

引理

Given a L-layer ($L \ge 2$) fully-connected neural network with width (m_0, \ldots, m_L) , for any network parameters $\boldsymbol{\theta} = (\boldsymbol{W}^{[1]}, \boldsymbol{b}^{[1]}, \cdots, \boldsymbol{W}^{[L]}, \boldsymbol{b}^{[L]})$ and for any $l \in [L-1]$, $s \in [m_l]$, we have the expressions for $\boldsymbol{\theta}' := \mathcal{T}_{l,s}^{\alpha}(\boldsymbol{\theta})$

(i) feature vectors in $\mathbf{F}_{\theta'}$: $\mathbf{f}_{\theta'}^{[l']} = \mathbf{f}_{\theta'}^{[l']}$, $l' \neq l$ and $\mathbf{f}_{\theta'}^{[l]} = \left[(\mathbf{f}_{\theta}^{[l]})^{\mathsf{T}}, (\mathbf{f}_{\theta}^{[l]})_{s} \right]^{\mathsf{T}}$; (ii) feature gradients in $\mathbf{G}_{\theta'}$: $\mathbf{g}_{\theta'}^{[l']} = \mathbf{g}_{\theta'}^{[l']}$, $l' \neq l$ and $\mathbf{g}_{\theta'}^{[l]} = \left[(\mathbf{g}_{\theta}^{[l]})^{\mathsf{T}}, (\mathbf{g}_{\theta}^{[l]})_{s} \right]^{\mathsf{T}}$; (iii) error vectors in $\mathbf{Z}_{\theta'}$: $\mathbf{z}_{\theta'}^{[l']} = \mathbf{z}_{\theta}^{[l']}$, $l' \neq l$ and $\mathbf{z}_{\theta'}^{[l]} = \left[(\mathbf{z}_{\theta}^{[l]})_{[1:s-1]}^{\mathsf{T}}, (1-\alpha)(\mathbf{z}_{\theta}^{[l]})_{s}, (\mathbf{z}_{\theta}^{[l]})_{[s+1:m_{l}]}^{\mathsf{T}}, \alpha(\mathbf{z}_{\theta}^{[l]})_{s} \right]^{\mathsf{T}}$.

ヘロト ヘ回ト ヘヨト ヘヨト

定理 (criticality preserving)

Given a L-layer ($L \ge 2$) fully-connected neural network with width (m_0, \ldots, m_L) , for any network parameters $\boldsymbol{\theta} = (\boldsymbol{W}^{[1]}, \boldsymbol{b}^{[1]}, \cdots, \boldsymbol{W}^{[L]}, \boldsymbol{b}^{[L]})$ and for any $l \in [L-1]$, $\boldsymbol{s} \in [m_l]$, $\alpha \in \mathbb{R}$, if $\nabla_{\boldsymbol{\theta}} \boldsymbol{R}_{\boldsymbol{S}}(\boldsymbol{\theta}) = \boldsymbol{0}$, then $\nabla_{\boldsymbol{\theta}} \boldsymbol{R}_{\boldsymbol{S}}(\mathcal{T}_{ls}^{\alpha}(\boldsymbol{\theta})) = \boldsymbol{0}$.

Illustration:

$$\nabla_{\boldsymbol{W}^{[l']}} \boldsymbol{R}_{\mathcal{S}}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{W}^{[l']}} \mathbb{E}_{\mathcal{S}}\ell(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{f}^{*}(\boldsymbol{x})) = \mathbb{E}_{\mathcal{S}}\left(\boldsymbol{z}_{\boldsymbol{\theta}}^{[l']} \circ \boldsymbol{g}_{\boldsymbol{\theta}}^{[l']}(\boldsymbol{f}_{\boldsymbol{\theta}}^{[l'-1]})^{\mathsf{T}}\right),$$

$$\nabla_{\boldsymbol{b}^{[l']}} \boldsymbol{R}_{\mathcal{S}}(\boldsymbol{\theta}) = \nabla_{\boldsymbol{b}^{[l]}} \mathbb{E}_{\mathcal{S}}\ell(\boldsymbol{f}_{\boldsymbol{\theta}}(\boldsymbol{x}), \boldsymbol{f}^{*}(\boldsymbol{x})) = \mathbb{E}_{\mathcal{S}}(\boldsymbol{z}_{\boldsymbol{\theta}}^{[l']} \circ \boldsymbol{g}_{\boldsymbol{\theta}}^{[l']}).$$

张耀宇 (SJTU)

Embedding Principle

Degeneracy

定义 (degree of degeneracy)

The degree of degeneracy of point θ in the landscape of R_S is the corank of Hessian matrix $\nabla_{\theta} \nabla_{\theta} R_S$, i.e., number of the zero eigenvalues.

Remark

For loss and activation with only first-order differentiability, we adopt the following relation to study the degree of degeneracy: For any critical point θ belonging to a *K*-dimensional critical submanifold \mathcal{M} , its degree of degeneracy is at least *K*.

引理 (increment of the degree of degeneracy)

Given a L-layer ($L \ge 2$) fully-connected neural network with width (m_0, \ldots, m_L) , if there exists $l \in [L - 1]$, $s \in [m_l]$, and a d-dimensional manifold \mathcal{M} consisting of critical points of R_S such that for any $\theta \in \mathcal{M}$, $W_{[1:m_{l+1}],s}^{[l+1]} \neq \mathbf{0}$, then

 $\mathcal{M}' := \{\mathcal{T}^{\alpha}_{l,s}(\boldsymbol{\theta}) | \boldsymbol{\theta} \in \mathcal{M}, \alpha \in \mathbb{R}\}$ is a (d + 1)-dimensional submanifold

consisting of critical points for the corresponding L-layer fully-connected neural network with width $(m_0, \ldots, m_{l-1}, m_l + 1, m_{l+1}, \ldots, m_L)$.

イロト 不得 トイヨト イヨト

定理 (informal)

If output weights of neurons in each layer of a DNN at a critical point θ_{narr} are not all zero, then, for any K-neuron wider DNN, θ_{narr} can be embedded to a K-dimensional critical affine subspace.

定理 (formal)

Consider two L-layer ($L \ge 2$) fully-connected neural networks $NN_A(\{m_l\}_{l=0}^L)$ and $NN_B(\{m_l'\}_{l=0}^L)$ which is K-neuron wider than NN_A . Suppose that the critical point $\theta_A = (\mathbf{W}^{[1]}, \mathbf{b}^{[1]}, \cdots, \mathbf{W}^{[L]}, \mathbf{b}^{[L]})$ satisfy $\mathbf{W}^{[I]} \neq \mathbf{0}$ for each layer $l \in [L]$. Then the parameters θ_A of NN_A can be critically embedded to a K-dimensional critical affine subspace of loss landscape of NN_B

$$\mathcal{M}_{B} = \{\boldsymbol{\theta}_{B} + \sum_{i=1}^{K} \alpha_{i} \boldsymbol{v}_{i} | \alpha_{i} \in \mathbb{R} \},\$$

where $\boldsymbol{\theta}_B = (\prod_{i=1}^{K} \mathcal{T}_{l_i, s_i})(\boldsymbol{\theta}_A)$ and $\boldsymbol{v}_i = \mathcal{T}_{l_K, s_K} \cdots \mathcal{V}_{l_i, s_i} \cdots \mathcal{T}_{l_1, s_1} \boldsymbol{\theta}_A$.

・ロト ・ 四ト ・ ヨト ・ ヨト …