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Unimaginable achievements of Al
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Image recognition

30%
25%
oo . e S 20%
mite container ship motor scooter eopard :
mite container ship motor scooter leopard -
black widow lifeboat go-kart jaguar ©
cockroach amphibian moped cheetah O 15%
tick fireboat bumper car snow leopard ';‘
starfish drilling platform golfcart Egyptian cat E
- ‘: N SR £ 10%
. ! s 4 . e ff
. i -.' X 0 Human Performance Zone
i
5%
grille mushroom cherry Madagascar cat 0%
convertible agaric dalmatian ﬂllﬁ_ikel monkey NEC-UIUC XRCE AlexNet ZFNet GoogLeNet  ResNet SENet
siiie mushroom grape L L (2010) (2011) (2012) (2013) (2014) (2015) (2017)
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine | dead-man’'s-fingers currant howler monkey

https://www.linkedin.com/pulse/must-read-path-
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THE INTERNATIONAL WEEXLY JOURNAL OF SCIENCE

At last — a computer program that
can beat a champion Go player Pace484

ALL SYSTEMS GO

Silver, et al, 2017
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Value network d Policy network
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structure prediction

David Baker Demis Hassabis John Jumper

“for computational protein design” “for protein structure prediction” “for protein structure prediction”

T1037 / 6vrd T1049 / 6y4f
90.7 GDT 93.3 GDT
(RNA polymerase domain) (adhesin tip)

@ Experimental result

@ Computational prediction

© Nobel Prize Outreach. Photo: Clément Morin © Nobel Prize Outreach. Photo: Clément Morin
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https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology



proertit

Input sequence

database
search

Structure
database
search
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Jumper et al., 2021

/‘\T\%@ﬂdﬁ




17 hrs ago
Woman with a Cactus Hat

artwork by Edmund Dulac
and Christian Schloe

() yaros89

17 hrs ago

Transparent Flask Water
Bottle

alexzz

om/index/sora/

https://www.midjourney.com/ https://openai.c



Diffusion model

Pixel Space Latent Space

—f ¥

Original Image
Image Encoder

Conditioning

Images
oRepresentations
Semantic Map

olext

Generated:image Image Decoder Reverse Diffusion - Removing noises

Text Encoder
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https://bootcamp.uxdesign.cc/how-stable-diffusion-works-explained-for-non-technical-people-be6aa674fald



Research

Safety

ChatGPT

Sora

API Platform

For Business

Stories

Company

News

What can | help with?

Brainstorm domain names

Search with ChatGPT

Talk with ChatGPT

Research

Sora

Q

More

Turing test?
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https://openai.com/

https://cshub.in/what-is-turing-test/
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The engine of Al: deep learning

Empirical risk: Rs(0) = %Z?zll(f(xi, 0),y:)
Model: f(x, 8)

Data: S = {(x;, yi)}icq J USt th IS’P

Common Models:
Linear models: polynomial models, random feature models, ---
Neural networks: fully-connected, convolutional, ResNet, Transformer, -

Common loss function:
Mean-squared error (12) loss: [(y,v') = ||y — v'|I5,
Cross entropy, Hinge loss, ...

Common training algorithm:
Gradient decent (GD): 6'*1 = 0 — nVR(6Y),
Stochastic gradient descent (SGD), Adam, ... /Y\i%”“‘:%ﬂﬁ
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AlphaGo,
AlphaFold,
ChatGPT,
SORA,
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https://www.ibm.com/cloud/learn/neural-networks



Which are black technologies?

®Synthetic diamond
®@Atomic bomb

®The Apollo Program

®@ChatGPT
®Quantum computer

®0.1 light-speed spaceship
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Bitter lesson for deep learning
theory
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The Bitter Lesson

Rich Sutton

March 13, 2019

The biggest lesson that can be read from 70 years of Al research is that eneral methods that leverage
computatlon are ultimately the most effective, and by a large margin. The ultimate reason for this is

MManwnla Tasir A wmathaw ibe camamalimakine AL mnmbimarad avaanmanbialler £allivan mnck snmem vvemid AL

®"The biggest lesson that can be read from 70 years of Al research is that general
methods that leverage computation are ultimately the most effective, and by a
large margin.”

Leverage computation (learning) instead of human knowledge
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http://www.incompleteideas.net/Incldeas/BitterLesson.html



Electronic Brain

S. McCulloch - W. Pitts

Perceptron

1950

F. Rosenblatt

ADALINE

A

Golden Age

XOR
Problem

A

(Backpropagation)

Dark Age (“Al Winter”)

Multi-layered
Perceptron

A

1960

spring

1960

B. Widrow - M. Hoff

1970

winter

1980

1986

spring

Deep Neural Network

m (Pretraining)
A
A
winter spring
2006

XANDY XORY NOT X
+1 +] -2 +1 +1 -1 -1
/LN /1N
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©

w,/ W W3 \W,

f

<@¢—— Backward Error

* Adjustable Weights
* Weights are not Learned

» Learnable Weights and Threshold

» XOR Problem

» Solution to nonlinearly separable problems

* Limitations of learning prior knowledge

* Hierarchical feature Learning

» Big computation, local optima and overfitting ¢ Kernel function: Human Intervention

A=l

https://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_partl.html



Timeline of deep learning theory

1969 book of Perceptrons (lead to the first winter)
®1986 Backpropagation (emergence of modern deep learning)

©®1989 Universal approximation theorem

1995 Generalization puzzle proposed (not well solved till now)
The Vapnik-Jackel Bet (witnessed by Yann Lecun)

®2017 Generalization puzzle demonstrated in SOTA settings

®2018 Neural Tangent Kernel (lead to a surge in DL theory research)

Frequency principle/Spectral bias

Despite 40 years of effort, framework for its math foundation yet%fe\njgg‘%eﬂﬁ




The bet on deep learning theory

The Vapnik-Jackel Bet in 1995

1. Jackel bets (one fancy dinner) that by March 14, 2000, people will
understand

quantitatively why big neural nets working on large databases are not so bad.
(Understanding means that there will be clear conditions and bounds)

Vapnik bets (one fancy dinner) that Jackel is wrong.

But .. If Vapnik figures out the bounds and conditions, Vapnik still wins the

bet.
LA A R R R R R R R R R R AR AR AR AR R AR R R R R Rl ARl Al Al Al Al Rl L

2. Vapnik bets (one fancy dinner) that by March 14, 2005, no one in his right
mind will use ncural nets that are essentially like those used in 1995,

Jackel bets ( one fancy dinner) that Vapnik is wrong

: 3/14/95
e
V. Vapnik
A 4 h 3/14//95
I.. Jackel
- 3/14/95

Witnessed h)’rY. LeCun
-

, w U|%Jﬂjﬁ

From Lecun’s talk




Black box

Intelligent Machines

The Dark Secret at the
Heart of Al

No one really knows how the most advanced algorithms do
what they do. That could be a problem.

by WillKnight ~ April 11,2017

ast year, a strange self-driving car was released onto the quiet

L roads of Monmouth County, New Jersey. The experimental

vehicle, developed by researchers at the chip maker Nvidia,
didn’t look different from other autonomous cars, but it was unlike
anything demonstrated by Google, Tesla, or General Motors, and it
showed the rising power of artificial intelligence. The car didn't follow a
single instruction provided by an engineer or programmer. Instead, it
relied entirely on an algorithm that had taught itself to drive by

watching a human do it.
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Theory of deep learning?

THIS IS WHERE YOU
LOST YOUR WALLET?

\ R

.

oA
NO, I LOST IT IN THE PARK. @'
BUT THIS IS WHERE THE LIGHT IS. /f»
N v

il

Tl
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Donoho’s PPT, Stats 385 Stanford




Figure : Every theorist who looks at it see what they wish
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Donoho’s PPT, Stats 385 Stanford




Is there a bitter lesson we can learn?

A (personal) bitter lesson:

All previously existing frameworks, irrespective of their origin or
demonstrated success, are ineffective for understanding deep learning.

Existing frameworks:

statistical learning theory, numerical analysis, statistical physics,
statistics, optimization, neuroscience, psychology, ...

/Y\J%Eﬂdﬁ




Existing frameworks often mislead

a Snake!

In face of deep learning, all of us are blind men.
Jass A

https://www.sloww.co/blind-men-elephant/



1. Suspension: Suspend the prior
and belief one may hold and focus
on the facts about the object.

2. Cumulation: Discover and
cumulate all possible facts about
the object. Prioritize the more
Informative ones.

3. Emergence: A new framework shall
emerge once enough pieces are
uncovered.

https://www.sloww.co/blind-men-elephant/
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Suspension Cumulation Emergence
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@®@Frequency principle/spectral bias
®Condensation
®Double descent
@Edge of stability
®Lottery ticket

®Neural collapse

@®@Grokking




Basics of deep learning theory  ——
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One neuron and its behavior

Single artificial neuron:
fo(x) = o(w'x + b)

Parameters (weights): 8 = (w, b), activation function: o(-):R - R

lllustration: e O
H(x)
! o Output ’ .
xr
0.8 o
0.6 N o
0.50—
0.4 A
0.2 , -
X NN =1




Deep neural networks:

Deep neural network
Input layer Multiple hidden layers Output layer

OO0

0 — (Wm? pll . Wl b[L])

fo (@) = (Wl £y~ (@) + bl

/Y\J%:Sﬂdﬁ

https://www.ibm.com/cloud/learn/neural-networks



Universal Approximation Theorem

Neural networks with a single hidden layer can be used to
approximate any continuous function to any desired precision.
Cybenko 89, Hornik 89, Hornik 91, Barron 93

Requirement for transfer function:
o(z) Is well-defined asz - —o0and z - o

) =) ya(wyx, +by)| < e
]

Sketch of a constructive proof:

1. Construct Heaviside function from the given transfer function
2. Construct “bump” function (1-d) or “tower” function (2-d)

3. Approximate the target continuous function with “oump” or
“tower” functions

sl

Ref: http://neuralnetworksanddeeplearning.com/chap4.html
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> Weighted output from hidden layer
1 Output from top hidden neuron 31 = 0 40
14
T '. 0 L1 —
P T t
Y, \ 82 = 0 60 /
. : o s 0.8
A\ T 1 \% v w2 =
{ IA -14

Weightéd output from hidden layer

Output ~ () ;1()‘- h =0.30

— \ T AN 030
e
D) 0 30 /
Y/ y ’/0.30
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No Free Lunch Theorem (Wolpert and Macready) /™

Theorem—Given a finite set V and a finite set S of real numbers, assume that
f:V — Sischosen at random according to uniform distribution on the set SV

of all possible functions from V to S. For the problem of optimizing f over the set
V, then no algorithm performs better than blind search.

classification

Q ® one How to infer the
0- ® zero MISSINg SpOt?
0 :
X1
/‘\T\%@ﬂdﬁ

https://en.wikipedia.org/wiki/No_free lunch_theorem
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Optimization

oroximation

®Robustness

Interpretability
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Optimization

Phenomenon

Despite strongly nonconvex loss landscape, gradient-based
training of large DNNSs often find global minima.

B —
Problem
| LB
What Is the geometry of loss landscape?

/Y\J%ﬂﬁ |




AP =i \¢F\ . .
&) Approximation

Phenomenon

Some architectures are more parameter efficient than others
regarding particular class of tasks.

EX:CNN vs. FNN for image, Transformer vs. LSTM for language

Problem

How to quantify the difference in parameter efficiency between
architectures?

/Y\J%:Sﬂdﬁ |




Robustnhess

Phenomenon

Output of well-trained DNNs are often susceptible to tiny
adversarial perturbation.

@€ ~

z sign(V.J(0,z,y)) esign(V,J (6, z,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Problem

Goodfellow et al.

Why is that? How to improve robustness?
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Interpretability

Phenomenon

One can hardly obtain an explanation with prediction power.

1: Great Pyrenees 1:Great_Pyrenees/kuvasz

Problem

When is It possible to obtain explanations with prediction power?
/Y\J%Eﬂdﬁ




Generalization puzzle of deep learning
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Learning systems with increasingly large size P

K h & star-nosed =
smoky amster mole
mouse
shrew shrew eastern mole

<. P o N . -

0.176g 03479 o0416g 1.020g 0.802g 18029 0999g
36 M 52 M 71M 90 M 131 M 200M 204 M

short-tailed

| | Parameters of transformer-based
- = g ® B language models

3.759 g 7.78 g 18.365 g 10.15g

15.73 g
20M 634 M 857 M 936 M

1468 M

capybara squirrel monkey
capuchin monkey

5, ¥

76.036 g

3246 M
1600 M "

3690 M

macaque monkey

1cm ga

87.359 ' GPT-4 GPT-3 Turing-NLG GPT-NEO GPT-2 BERT
6376 M

86000 M

Suzana Herculano-Houzel, 2009
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Weirdness of “bigger is better”

"With four parameters you can fit an elephant to a curve,;

with five you can make him wiggle his trunk.”
-- John von Neumann

igh Bias r Bias
Low Variance High Variance
. ———————— -
5]
501 o
=]
=)
2
+2
y O % Test Sample
Ay
—50} /
Training Sample
-10 Lo ——
-100 -50 0 50 100 ow g

X Model Complexity

Mayer et al., 2010

Complex models easily overfit. P e




Fallure of traditial wisdom

Large complexity = Large generalization gap

Generalization Gap

Underﬁt Overﬁt High Bias Low Bias
(high bias) (high variance) Low Variance High Variance
e = :
e © @ ) LEI.
®° e g
B -=
8K Ky £
* o ® J:
. P, -
o X
* * Training Sample
High training error Low training error Low training error Low High
High test error Low test error High test error Model Complexity

Occam Razor: Entities should not be multiplied unnecessariBL
yaaN=—<uitll




Mystery: overparameterized NN often generalize well ..

Leo Breiman
Statistics Department, University of California, Berkeley, CA 94305;

1995 e-mail: leo @stat.berkeley.edu
Reflections After Refereeing Papers for NIPS

Our fields would be better off with far fewer theorems, less emphasis on faddish
stuff, and much more scientific inquiry and engineering. But the latter requires real
thinking.

For instance, there are many important questions regarding neural networks
which are largely unanswered. There seem to be conflicting stories regarding the

following issues:

Why don’t heavily parameterized neural networks overfit the data?

What is the effective number of parameters?
Why doesn’t backpropagation head for a poor local minima?
When should one stop the backpropagation and use the current parameters?

sl




Modern verification of generalization mystery

Sl N S T UNDERSTANDING DEEP LEARNING REOQUIRES RE-
— NI . .

. THINKING GENERALIZATION
—:" y h E’L..
’ . oy J S -~/ I,
= . : - Chiyuan Zhang* Samy Bengio Moritz Hardt
1 R W Massachusetts Institute of Technology Google Brain Google Brain
& K ¢ ;-5\ chiyuan@mit.edu bengio@google.com mrtz@google.com
— v ’
EEEEE | o g
! _ L > University of California, Berkeley Google DeepMind
A m - R » | brecht@berkeley.edu vinyals@google.com
» . '. ' ’ ! .
- l‘ J {‘ . . .
. o - = Cifarl0: 60,000 training data
ol RSl

' model #params randomcrop weight decay train accuracy  test accuracy
3 v »//'
' . ' yes yes 100.0 89.05
(3 B! n' - . yes no 100.0 89.31
Inception 1,649,402 0 yes 100.0 26.03
. E ;i = ‘ o 1o 100.0 8575 |
ﬁ (fitting random labels) no no 100.0 9.78

dnhu Zhang et al., 2017
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Generalization mystery in 1-d

interpolation P
Find an interpolation of D: {(x;, y;)}i=; in H:{h(:;0)|0 € R™}

|| == 10-layer

® @ data
- 2-layer
- 4-layer
- 6-layer
8-layer

- 12-layer
== complex

Example:
h(x;0) =0, +0,x + -+ Oyx™ Lt withm =n
20+
v \J o
Traditional wisdom: m < n. 0
Modern wisdom? -

Using neural network with m > n.

-3 -2 -1 0 1 2

3 4
X
Lei Wu, Zhanxing Zhu, Weinan 1
Y==sutull |
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