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Deep learning is no longer a black-box



A phenomenological methodology

1. Suspension: Suspend the prior 

and belief one may hold and focus 

on the facts about the object.

2. Cumulation: Discover and 

cumulate all possible facts about 

the object. Prioritize the more 

informative ones.

3. Emergence: A new framework shall 

emerge once enough pieces are 

uncovered.



Cumulation of phenomena from experience

https://en.wikipedia.org/wiki/Edmund_Husserl

Husserl warns against this inversion of process, where theories can eclipse, 
misshape, or entirely ignore the vital qualities encountered in direct perception.

https://fixquotes.com/



Problem: Given 𝒟: (𝑥𝑖 , 𝑦𝑖) 𝑖=1
𝑛 and ℋ: {𝑓 ⋅; Θ |Θ ∈

ℝ𝑚}, find 𝑓 ∈ ℋ such that 𝑓 𝑥𝑖 = 𝑦𝑖 for 𝑖 = 1, ⋯ , 𝑛.

ℋ

𝒟

ሶ𝛩 = −𝛻𝛩𝐿 𝛩

Θ 0 = 𝛩0

𝐿 𝛩 = 1
2𝑛 

𝑖=1

𝑛

𝑓 𝑥𝑖; 𝛩 − 𝑦𝑖
2

How to experience deep learning?

General observation: 

𝑓 𝑥𝑖; 𝛩(∞) often generalize well 

even when 𝑚 ≫ 𝑛.



How to experience deep learning?

Two key objects

Trajectory in function space

𝑓 ⋅, 𝑡 : ℝ+ → ℋ

Trajectory in parameter space

Θ 𝑡 : ℝ+ → ℝ𝑚

Common strategy: choose proper statistics for observation.

Limitation: choice of statistics reflect our bias, no guarantee for 

effectiveness. 

Can we observe the whole trajectory?



Frequency Principle



tanh-DNN, 200-100-100-50

Evolution of neural network output function 𝒇(𝒙, 𝜽(𝒕))



Frequency Principle (F-Principle):
DNNs often fit training data from low to high 
frequencies during the training.

Xu, Zhang, Xiao, Training behavior of deep neural network in frequency domain, 2018

Nasim Rahaman et al, On the Spectral Bias of Neural Networks, 2018

Through the lens of Fourier transform 𝒇(𝝃, 𝜽(𝒕))



Synthetic curve with equal amplitude



Target: image 𝐼 𝐱 : ℝ2 → ℝ
𝐱 :  location of a pixel

𝐼 𝐱 :  grayscale pixel value

How DNN fits a 2-d image?



High-dimensional real data?

F-Principle

Xu, Zhang, Luo, Xiao, Ma, Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks, 2019 

1.0 0.5 0.0 0.5 1.0
x

1

0

1

?



Frequency

• This frequency corresponds to 
the rate of change of intensity 
across neighboring pixels.

Response frequency

• Frequency of a general Input-
Output mapping 𝑓.

መ𝑓 𝐤 = න 𝑓 𝐱 e−i2𝜋𝐤⋅𝐱 d𝐱

MNIST: ℝ784 → ℝ10, 𝐤 ∈ ℝ784

zero freq

Same color
high freq

Sharp edge

high freq： Adversarial example
Goodfellow et al.

Image frequency (NOT USED)



Examining F-Principle for high-dim real problems

Nonuniform Discrete Fourier transform (NUDFT) for training dataset 
(𝐱𝑖 , 𝑦𝑖) 𝑖=1

𝑛 :

ො𝑦𝐤 =
1

𝑛
σ𝑖=1

𝑛 𝑦𝑖e−i2𝜋𝐤⋅𝐱𝑖, ℎ𝐤(𝑡) =
1

𝑛
σ𝑖=1

𝑛 ℎ(𝐱𝑖 , 𝑡)e−i2𝜋𝐤⋅𝐱𝑖

Difficulty: 

• Curse of dimensionality, i.e., #𝐤 grows exponentially with 
dimension of problem 𝑑.

Our approaches:

• Projection, i.e., choose 𝐤 = 𝑘𝐩1

• Filtering



Projection approach

MNIST

CIFAR10

Relative error: Δ𝐹 𝑘 = ℎ𝑘 − ො𝑦𝑘 /| ො𝑦𝑘|



low-freq of ො𝑦

high-freq of ො𝑦

𝑘0

Decompose frequency domain by filtering



F-Principle in high-dim space

CIFAR10 CIFAR10MNIST



Implication of F-Principlele

Xu, Zhang, Xiao, Training behavior of deep neural network in frequency domain, 2018
Xu, Zhang, Luo, Xiao, Ma, Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks, 2019 



Frequency principle for 2-d image restoration 



For Ԧ𝑥 ∈ −1,1 𝑛

𝒇 𝒙 = ς𝒋=𝟏
𝒏 𝒙𝒋, 

Even #‘-1’ → 1; 

Odd  #‘-1’ → -1.

Test accuracy: 72% %>>10% Test accuracy: ~50%, random guess

F-Principe: DNNs prefer low frequencies

CIFAR10 parity

Generalization puzzle



When should one stop the backpropagation 
and use the current parameters?

Effect of early stopping



Theory of F-Principle



Theory in a idealized setting

• Consider a tanh-DNN of one-hidden layer for fitting a 1-d function 𝑓

ℎ 𝑥 = 

𝑗=1

𝑚

𝑎𝑗𝜎 𝑤𝑗𝑥 + 𝑏𝑗 ,

ℎ 𝑘 ≈ 

𝑗=1

𝑚

𝑎𝑗 exp(
𝑖𝑏𝑗

𝑤𝑗
) exp −

𝜋𝑘

2𝑤𝑖
,

• Define the loss at frequency 𝑘

𝐿 𝑘 =
1

2
ℎ 𝑘 − መ𝑓 𝑘

2

By Parseval’s theorem: 𝐿 =  𝐿 𝑘 𝑑𝑘 = 
1

2
𝑓 𝑥 − ℎ(𝑥) 2𝑑𝑥

• Compute the gradient by the loss in Fourier domain 

𝜃 ← 𝜃 − 𝜂 
𝜕𝐿 𝑘

𝜕𝜃



• 𝐴 𝑘 > 0:

If 𝑤𝑖 is small, exp(− 𝜋𝑘/2𝑤𝑗 ) dominate, low frequencies dominate. 

For 𝑤𝑖 ∈ 𝐵𝛿, center at 0 with radius 𝛿, if 𝛿 is small, contribution of high 

frequency loss is negligible.

• 𝐴 𝑘 ≈ 0:
small contribution from 𝐿(𝑘)

Where 𝐴 𝑘 = ℎ 𝑘 − መ𝑓 𝑘

𝜕𝐿(𝑘)

𝜕𝜃
≈ 𝐴 𝑘 exp −

𝜋𝑘

2𝑤𝑖

𝐺(𝜃, 𝑘)

Insight: smoothness/regularity of activation 

function 𝜎(⋅) can be converted into F-

Principle through gradient-based training.  

Low 

freq

high 

freq

Analysis



The NTK regime

𝐿 Θ = σ𝑖=1
𝑛 ℎ 𝑥𝑖; Θ − 𝑦𝑖

2

ሶΘ = −∇Θ𝐿 Θ

• 𝜕𝑡ℎ 𝑥; Θ = − σ𝑖=1
𝑛 𝐾Θ 𝑥, 𝑥𝑖 ℎ 𝑥𝑖; Θ − 𝑦𝑖

Where 𝐾Θ 𝑥, 𝑥′ = ∇Θℎ 𝑥; Θ ⋅ ∇Θℎ 𝑥′; Θ

• Neural Tangent Kernel (NTK) regime: 

𝐾Θ(t) 𝑥, 𝑥′ ≈ 𝐾Θ(0) 𝑥, 𝑥′ for any t.

Jacot et al., 2018

Zhang, Xu, Luo, Ma, Explicitizing an Implicit Bias of the Frequency Principle in Two-layer Neural Networks, CPL, 2021



Problem simplification

𝒟

ℋ

find ሶ𝛩 = −𝛻𝛩𝐿 𝛩

Initialized by special 𝛩0

1.0 0.5 0.0 0.5 1.0
x

1

0

1

Kernel gradient flow
𝜕𝑡𝑓 𝑥, 𝑡 = −Σ𝑖=1

𝑛 𝐾Θ0
𝑥, 𝑥𝑖 𝑓 𝑥𝑖 , 𝑡 − 𝑦𝑖

Two-layer ReLU NN

ℎ 𝑥; 𝛩 = 
𝑖=1

𝑛

𝑤𝑖𝜎 (𝑟𝑖(𝑥 + 𝑙𝑖))



Some basics of Fourier transform

Tao Luo, Zheng Ma, Zhi-Qin John Xu, Yaoyu Zhang, “On the exact computation of linear frequency principle dynamics and its generalization”, 

SIAM Journal on Mathematics of Data Science 4 (4), 1272-1292, 2022.



Some basics of Fourier transform

Tao Luo, Zheng Ma, Zhi-Qin John Xu, Yaoyu Zhang, “On the exact computation of linear frequency principle dynamics and its generalization”, 

SIAM Journal on Mathematics of Data Science 4 (4), 1272-1292, 2022.



Linear F-Principle (LFP) dynamics

2-layer NN: ℎ 𝑥; 𝛩 = σ𝑖=1
𝑛 𝑤𝑖ReLU(𝑟𝑖(𝑥 + 𝑙𝑖))

⋅ : mean over all neurons at initialization

𝑓: target function; ⋅ 𝑝 = (⋅)𝑝,where 𝑝 𝑥 =
1

𝑛
σ𝑖=1

𝑛 𝛿(𝑥 − 𝑥𝑖); 

Ƹ⋅: Fourier transform; 𝜉: frequency

ReLU

aliasing

𝜕𝑡
ℎ 𝜉, 𝑡 = −

4𝜋2 𝑟2𝑤2

𝜉2
+

𝑟2 + 𝑤2

𝜉4
ℎ𝑝 𝜉, 𝑡 − 𝑓𝑝 𝜉, 𝑡

Assumptions: 

(i) NTK regime, (ii) sufficiently wide distribution of 𝑙𝑖.



𝜕𝑡
ℎ 𝜉, 𝑡 = −

4𝜋2 𝑟2𝑤2

𝜉2
+

𝑟2 + 𝑤2

𝜉4
ℎ𝑝 𝜉, 𝑡 − 𝑓𝑝 𝜉, 𝑡

Preference induced by LFP dynamics

min
ℎ∈𝐹𝛾


4𝜋2 𝑟2𝑤2

𝜉2 +
𝑟2 + 𝑤2

𝜉4

−1
ℎ 𝜉

2
d𝜉

s.t. ℎ 𝑥𝑖 = 𝑦𝑖 for 𝑖 = 1, ⋯ , 𝑛

low frequency 

preference

Case 1: 𝜉−2 dominant 

• min  𝜉2 ℎ 𝜉
2

d𝜉~min  ℎ′(𝑥) 2 d𝜉 → linear spline

Case 2: 𝜉−4 dominant

• min  𝜉4 ℎ 𝜉
2

d𝜉~min  ℎ′′(𝑥) 2 d𝜉 → cubic spline



Case 1
𝑟2 + 𝑤2 ≫ 4𝜋2 𝑟2𝑤2

Case 2
4𝜋2 𝑟2𝑤2 ≫ 𝑟2 + 𝑤2

min න 𝜉2 ℎ 𝜉
2

d𝜉 min න 𝜉4 ℎ 𝜉
2

d𝜉

Regularity can be changed through initialization



𝜕𝑡
ℎ 𝜉, 𝑡 = −

|𝑟|2 + 𝑤2

|𝜉|𝑑+3
+

4𝜋2 |𝑟|2𝑤2

|𝜉|𝑑+1
ℎ𝑝 𝜉, 𝑡 − 𝑓𝑝 𝜉, 𝑡

where 𝑓: target function; ⋅ 𝑝 = (⋅)𝑝,where 𝑝 𝑥 =
1

𝑛
σ𝑖=1

𝑛 𝛿(𝑥 − 𝑥𝑖);

(⋅): Fourier transform; 𝜉: frequency.

Theorem (informal). Solution of LFP dynamics at 𝑡 → ∞ with initial value

ℎini is the same as solution of the following optimization problem

min
ℎ−ℎini∈𝐹𝛾

න
𝑟 2 + 𝑤2

|𝜉|𝑑+3
+

4𝜋2 𝑟 2𝑤2

|𝜉|𝑑+1

−1

ℎ 𝜉 − ℎini(𝜉)
2

d𝜉

s.t. ℎ 𝑋 = 𝑌.

High-dimensional Case



FP-norm and FP-space

A priori generalization error bound
Theorem (informal). Suppose that the real-valued target function 𝑓 ∈ 𝐹𝛾(Ω), ℎ𝑛 is

the solution of the regularized model

min
ℎ∈𝐹𝛾

ℎ 𝛾 s.t. ℎ 𝑋 = 𝑌

Then for any 𝛿 ∈ (0,1) with probability at least 1 − 𝛿 over the random training

samples, the population risk has the bound

𝐿 ℎ𝑛 ≤ 𝑓 ∞ + 2 𝑓 𝛾 𝛾 𝑙2
2

𝑛
+ 4

2log(4/𝛿)

𝑛

We define the FP-norm for all function ℎ ∈ 𝐿2(Ω):

ℎ 𝛾: = ℎ
𝐻Γ

= 

𝑘∈ℤ𝑑∗

𝛾−2 𝑘 ℎ 𝑘
2

1/2

Next, we define the FP-space:

𝐹𝛾 Ω = {ℎ ∈ 𝐿2(Ω): ℎ 𝛾 < ∞}



Revisit Leo Breiman’s problems (1995)

1. Why don’t heavily parameterized neural 
networks overfit the data? 

2. What is the effective number of parameters?

3. Why doesn’t backpropagation head for a poor 
local minima?

4. When should one stop the backpropagation and 
use the current parameters?

Leo Breiman, Reflections After Refereeing Papers for NIPS



Overparameterized DNNs still generalize well

Lei Wu, Zhanxing Zhu, Weinan E, 2017 

#para(~1000)>>#data: 5



A picture for the generalization puzzle

Global 

Minima

unbiased initialization + 

F-Principle

+ ⋯
(to be discovered)

Parameter space
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DNNs are not black boxes--Problems

How can neural networks be prevented from overfitting to noise in the training data?

How can the convergence towards high-frequency components of the target 

function be improved during training?

Is it possible to design a model that prioritizes fitting high-frequency components 

before low-frequency ones during training?

What characteristics of a target function or dataset make it difficult for deep neural 

networks to generalize?

What methods or conditions can be employed to induce deep neural networks to 

overfit the training data, resulting in a large generalization error?



Thanks！



Impact of initialization



ℎ 𝑥; 𝜽 = ℎ 𝐻

ℎ[𝑗] = 𝜎 𝑊 𝑗 ℎ 𝑗−1 + 𝑏 𝑗

𝜽: 𝑊 𝑗 , 𝑏 𝑗
𝑗=1,⋯,𝐻

Deep Neural Network Initialization

Example: Two-layer NN

ℎ𝜽 𝑥 = 
𝑖=1

𝑚1

𝑤𝑖
2

𝜎(𝑤𝑖
1

𝑥 + 𝑏𝑖
[1]

)

𝜽(0): 𝑊 𝑗 (0), 𝑏 𝑗 (0)
𝑗=1,⋯,𝐻

𝑊 𝑗 0 , 𝑏 𝑗 0 ~𝒩(0, 𝜎𝑗
2)

𝜎𝑗 𝑗=1,⋯,𝐻
→ ℎ𝜽 ∞ (𝑥)?

initialization generalization



ZQJ Xu, Y Zhang, Y Xiao, Training behavior of deep neural network in frequency domain, ICONIP 2019.

train testinitial

𝜎𝑗 = 10

𝜎𝑗 = 0.1

DNN can easily overfit with bad initialization



Impact of 𝒇(⋅, 𝚯(𝟎))



Setup in the linear (NTK) regime

NNs can be linearized around initialization

Loss

Neural tangent kernel (NTK)

Kernel gradient flow



Equivalent optimization problems

In a general class, e.g., any 𝑳𝒑 distance, choice of loss has no impact.

In practice, different loss can be considered to accelerate convergence.



Main results

unbiased fit bias from 𝒉𝐢𝐧𝐢

additional 

generalization error



1.0 0.5 0.0 0.5 1.0
x

1

0

1

ℎ𝐾 ⋅; ℎini, 𝑋, 𝑌 − ℎ𝐾 ⋅; 0, 𝑋, 𝑌 = ℎini − ℎ𝐾 ⋅; 0, 𝑋, ℎini(𝑋)

bias: high freq of 𝒉𝐢𝐧𝐢

1.0 0.5 0.0 0.5 1.0
x

0

5

10

15

20 𝟐𝟎 × |𝐛𝐢𝐚𝐬|

ℎ𝐾 ⋅; ℎini, 𝑋, 𝑌 -ℎ𝐾 ⋅; 0, 𝑋, 𝑌 ℎini − ℎ𝐾 ⋅; 0, 𝑋, ℎini(𝑋)

Illustration



Revisit previous experiments



AntiSymmetrical Initialization (ASI) trick

Copy 

weight

opposite 

weight

Zero output

Copy 

weight

Original DNN
ℎ 𝑥, 𝜃 with 𝜃 0 = 𝜃0

After ASI

ℎASI =
2

2
ℎ 𝑥, 𝜃 −

2

2
ℎ 𝑥, 𝜃′

𝜃′ 0 = 𝜃 0 = 𝜃0

Properties

1. ℎASI = 0 at initialization

2. 𝑘ASI ⋅,⋅ = 𝑘 ⋅,⋅



Experiments--Boston house price dataset



Experiments—MNIST dataset
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