

The Condensation Phenomenon of Deep Neural Networks

Yaoyu Zhang

Institute of Natural Sciences & School of Mathematical Sciences

Shanghai Jiao Tong University

MaD Seminar, New York University

饮水思源·爱国荣校

Learning systems with increasingly large size

Suzana Herculano-Houzel, 2009

Parameters of transformer-based language models

62023 TECHTARGET. ALL RIGHTS RESERVED TechTarget

Failure of traditional wisdom

Large complexity → Large generalization gap

Traditional wisdom: complex models easily overfit

Generalization Gap

Long-standing problems

Leo Breiman Statistics Department, University of California, Berkeley, CA 94305; e-mail: leo@stat.berkeley.edu

Reflections After Refereeing Papers for NIPS

- Why don't heavily parameterized neural networks overfit the data?
- What is the effective number of parameters?
- Why doesn't backpropagation head for a poor local minima?
- When should one stop the backpropagation and use the current parameters?

How (overparameterized) neural networks control the complexity of output function during **nonlinear** training?

Condensation Phenomenon

Illustration of Condensation

Tao Luo, Zhi-Qin John Xu, Zheng Ma, Yaoyu Zhang, Phase diagram for two-layer ReLU neural networks at infinite-width limit, Journal of Machine Learning Research (2021)

1d example: condensation with small initialization

Small initialization: $a_j(0), w_j(0), b_j(0) \sim N(0, \sigma^2)$ with small σ

Evolution trajectory: change significantly

(a) epoch=100

(b) epoch=1000

(c) epoch=3000

Evolution trajectory: change significantly

(d) epoch=5000

(e) epoch=10000

(f) epoch=100000

Condensation in CNN on MNIST

30

0

Ó

10

5

15

index

(e) final weight

20

25

30

(a) Loss

- 0.75

-1.00

Cosine similarity: $D(u_1, u_2) = \frac{u_1^{\mathsf{T}} u_2}{(u_1^{\mathsf{T}} u_1)^{1/2} (u_2^{\mathsf{T}} u_2)^{1/2}}.$

100% training and 97.62% test accuracy

Condensation in transformer

$$A_{ heta}(X) = \sum_{i=1}^{h} \operatorname{softmax}_{\operatorname{row}} \left(rac{XW_{Q_i}W_{K_i}^{ op}X^{ op}}{\sqrt{d}}
ight) XW_{V_i}W_{O_i}^{ op}$$

Regime of Condensation

1.Tao Luo, Zhi-Qin John Xu, Zheng Ma, Yaoyu Zhang, "Phase Diagram for Two-layer ReLU Neural Networks at Infinite-Width Limit," Journal of Machine Learning Research (JMLR) 22(71):1–47, (2021).

2.Hanxu Zhou, Qixuan Zhou, Zhenyuan Jin, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu, "Empirical Phase Diagram for Three-layer Neural Networks with Infinite Width," NeurIPS 2022.

Normalization and scaling parameters

$$f^{\alpha}_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{\alpha} \sum_{k=1}^{m} a_k \sigma(\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x}) \qquad a^0_k \sim N(0, \beta_1^2), \ \boldsymbol{w}^0_k \sim N(0, \beta_2^2 \boldsymbol{I}_d) \qquad \begin{array}{l} \boldsymbol{x} = [\boldsymbol{x}^T, 1]^T \\ \boldsymbol{w}_k = [\boldsymbol{w}^T_k, \boldsymbol{b}_k]^T \end{array}$$

Normalized gradient flow

$$\bar{a}_{k} = \beta_{1}^{-1} a_{k}, \quad \bar{\boldsymbol{w}}_{k} = \beta_{2}^{-1} \boldsymbol{w}_{k}, \quad \bar{t} = \frac{1}{\beta_{1}\beta_{2}} t,$$

$$\frac{\mathrm{d}\bar{a}_{k}}{\mathrm{d}\bar{t}} = -\frac{1}{\kappa'} \frac{1}{n} \sum_{i=1}^{n} \kappa \sigma(\bar{\boldsymbol{w}}_{k}^{\mathsf{T}} \boldsymbol{x}_{i}) \left(\kappa \sum_{k'=1}^{m} \bar{a}_{k'} \sigma(\bar{\boldsymbol{w}}_{k'}^{\mathsf{T}} \boldsymbol{x}_{i}) - y_{i}\right),$$

$$\frac{\mathrm{d}\bar{\boldsymbol{w}}_{k}}{\mathrm{d}\bar{t}} = -\kappa' \frac{1}{n} \sum_{i=1}^{n} \kappa \bar{a}_{k} \sigma'(\bar{\boldsymbol{w}}_{k}^{\mathsf{T}} \boldsymbol{x}_{i}) \boldsymbol{x}_{i} \left(\kappa \sum_{k'=1}^{m} \bar{a}_{k'} \sigma(\bar{\boldsymbol{w}}_{k'}^{\mathsf{T}} \boldsymbol{x}_{i}) - y_{i}\right).$$

$$m \to +\infty$$
$$\frac{\beta_1 \beta_2}{\alpha} = m^{-\gamma}$$
$$\frac{\beta_1}{\beta_2} = m^{-\gamma'}$$

Scaling parameters and infinite-width limit

$$\kappa := \frac{\beta_1 \beta_2}{\alpha}, \quad \kappa' := \frac{\beta_1}{\beta_2}, \quad \gamma = \lim_{m \to \infty} -\frac{\log \kappa}{\log m}, \quad \gamma' = \lim_{m \to \infty} -\frac{\log \kappa'}{\log m}$$

Tao Luo, Zhi-Qin John Xu, Zheng Ma, Yaoyu Zhang, Phase diagram for two-layer ReLU neural networks at infinite-width limit, Journal of Machine Learning Research (2021)

Initialization scheme

Name (related works)	α	eta_1	eta_2	$rac{\kappa}{\left(rac{eta_1eta_2}{lpha} ight)}$	$\kappa' \ \left(rac{eta_1}{eta_2} ight)$	$\gamma_{\left(\lim_{m\to\infty}\frac{\log 1/\kappa}{\log m}\right)}$	$\gamma' \ (\lim_{m \to \infty} rac{\log 1/\kappa'}{\log m})$
LeCun (LeCun et al., 2012)	1	$\sqrt{\frac{1}{m}}$	$\sqrt{\frac{1}{d}}$	$\sqrt{rac{1}{md}}$	$\sqrt{rac{d}{m}}$	$\frac{1}{2}$	$\frac{1}{2}$
He (He et al., 2015)	1	$\sqrt{\frac{2}{m}}$	$\sqrt{\frac{2}{d}}$	$\sqrt{rac{4}{md}}$	$\sqrt{rac{d}{m}}$	$\frac{1}{2}$	$\frac{1}{2}$
Xavier (Glorot and Bengio, 2010)	1	$\sqrt{\frac{2}{m+1}}$	$\sqrt{\frac{2}{m+d}}$	$\sqrt{\frac{4}{(m+1)(m+d)}}$	$\sqrt{\frac{m+d}{m+1}}$	1	0
NTK (Jacot et al., 2018)	\sqrt{m}	1	1	$\sqrt{\frac{1}{m}}$	1	$\frac{1}{2}$	0
Mean-field (Mei et al., 2018) (Sirignano and Spiliopoulos, 2020)	m	1	1	$\frac{1}{m}$	1	1	0
(Rotskoff and Vanden-Eijnden, 2018) E et al. (E et al., 2020)	1	eta	1	eta	eta	$\lim_{m \to \infty} \frac{\log 1/\beta}{\log m}$	$\lim_{m \to \infty} \frac{\log 1/\beta}{\log m}$

When condensation happens (at infinite width limit)?

Phase Diagram

Tao Luo, Zhi-Qin John Xu, Zheng Ma, Yaoyu Zhang, Phase diagram for two-layer ReLU neural networks at infinite-width limit, Journal of Machine Learning Research (2021)

Regime separation -- theorems

Theorem 1*. (Informal statement of Theorem 6) If $\gamma < 1$ or $\gamma' > \gamma - 1$, then with a high probability over the choice of θ^0 , we have

$$\lim_{m \to +\infty} \sup_{t \in [0, +\infty)} \operatorname{RD}(\boldsymbol{\theta}_{\boldsymbol{w}}(t)) = 0.$$
(20)

Theorem 2*. (Informal statement of Theorem 8) If $\gamma > 1$ and $\gamma' < \gamma - 1$, then with a high probability over the choice of θ^0 , we have

Feature distribution across the phase diagram

 $f^{\alpha}_{\boldsymbol{\theta}}(\boldsymbol{x}) = \frac{1}{\alpha} \sum_{k=1}^{m} a_k \sigma(\boldsymbol{w}_k^{\mathsf{T}} \boldsymbol{x})$

Blue: $m = 10^3$ Red: $m = 10^4$ Yellow: $m = 10^6$

Typical cases across the phase diagram

Tao Luo, Zhi-Qin John Xu, Zheng Ma, Yaoyu Zhang, Phase diagram for two-layer ReLU neural networks at infinite-width limit, Journal of Machine Learning Research (2021)

Phase diagram in three-layer ReLU NN

 上海交通大学 Shanghai Jiao Tong UNIVERSITY

Hanxu Zhou, Qixuan Zhou, Zhenyuan Jin, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu, Empirical Phase Diagram for Three-layer Neural Networks with Infinite Width, NeurIPS 2022

Loss landscape structure underlying condensation

1.Yaoyu Zhang, Zhongwang Zhang, Tao Luo, Zhi-Qin John Xu, "Embedding Principle of Loss Landscape of Deep Neural Networks," NeurIPS 2021 spotlight.

2.Yaoyu Zhang, Yuqing Li, Zhongwang Zhang, Tao Luo, Zhi-Qin John Xu, "Embedding Principle: a hierarchical structure of loss landscape of deep neural networks," Journal of Machine Learning, 1(1), pp. 60-113, 2022.

3.Hanxu Zhou, Qixuan Zhou, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu, "Towards Understanding the Condensation of Neural Networks at Initial Training," NeurIPS 2022.

Typical training behavior with strong condensation

Width-500 tanh-NN (~1500 parameters)

Trajectory of training loss

Initial condensation

Hanxu Zhou, Qixuan Zhou, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu, Towards Understanding the Condensation of Neural Networks at Initial Training, NeurIPS 2022.

Loss landscape around 0 and Initial condensation

$$\dot{\boldsymbol{w}}_{j} = \sum_{i=1}^{m} (y_{i} - f_{\boldsymbol{\theta}}(\boldsymbol{x}_{i})) a_{j} \sigma' (\boldsymbol{w}_{j}^{\mathrm{T}} \boldsymbol{x}_{i}) \boldsymbol{x}_{i}$$

When $\theta \approx 0$, then $f_{\theta}(\cdot) \approx 0(\cdot)$:

$$\dot{\mathbf{w}}_j \approx a_j \sum_{i=1}^m y_i \sigma'(\mathbf{w}_j^{\mathrm{T}} \mathbf{x}_i) \mathbf{x}_i$$

If $\sigma'(0) \neq 0$ (e.g. tanh, swish, gelu): $\dot{w}_j \approx a_j \sigma'(0) \sum_{i=1}^m y_i x_i$

i. No coupling between w_i and $w_{i'}$! ii. 2 limiting directions: $\pm \sum_{i=1}^{m} y_i x_i$.

(a) tanh(x)

49

(b) $x \tanh(x)$

Hanxu Zhou, Qixuan Zhou, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu, Towards Understanding the Condensation of Neural Networks at Initial Training, NeurIPS 2022.

Intermediate condensation

Zhang, Zhang, Luo, Xu, NeurIPS 2021 spotlight. Zhang, Li, Zhang, Luo, Xu, Journal of Machine Learning 2022.

Condensed critical points for intermediate stage _____

Embedding Principle (informal Theorem) The loss landscape of any network ``contains" all critical points of all narrower networks.

Equivalent Statement $\mathcal{F}_{narr}^{c} \subseteq \mathcal{F}_{wide}^{c}$, where $\mathcal{F}^{c} \coloneqq \{f_{\theta}(\cdot) | \nabla R_{S}(\theta) = 0\}$.

Observation: Width similarity

Implication of theory: simple condensed critical points are common

Zhang, Zhang, Luo, Xu, NeurIPS 2021 spotlight. Zhang, Li, Zhang, Luo, Xu, Journal of Machine Learning 2022.

hierarchical structure of DNN loss landscape

Simple \rightarrow Complex

Zhang, Li, Zhang, Luo, Xu, Journal of Machine Learning 2022.

Example: identification of critical points and functions

500 tanh neuron

Zhang, Li, Zhang, Luo, Xu, Journal of Machine Learning 2022.

Embedding principle

One-step splitting embedding $T: \mathbb{R}^{M_{\text{narr}}} \to \mathbb{R}^{M_{\text{wide}}}$

Theorem: One-step splitting embedding *T* with $\theta_{wide} = T(\theta_{narr})$ satisfies: (i) **output preserving**: $f_{\theta_{narr}}(x) = f_{\theta_{wide}}(x)$; (ii) **criticality preserving**: If $\nabla R_S(\theta_{narr}) = \mathbf{0}$, then $\nabla R_S(\theta_{wide}) = \mathbf{0}$.

Existance of condensed critical points---embedding principle

Final condensation

Geometry of global-min: simpler f*, higher-dim Q*_____

- Model: $F(\theta)(x) = a_1 \sigma(w_1^T x) + a_2 \sigma(w_2^T x), x \in \mathbb{R}^2, \theta \in \mathbb{R}^6$
- Target: $f^* = \overline{a}\sigma(\overline{w}^T x)$
- **Target Set** $Q^* = F^{-1}(f^*)$ generally consists of three "branches" (sets)

 $L_{s}^{-1}(0$

(a)
$$Q_1 = \{(a_k, w_k)_{k=1}^2 : w_1 = w_2 = \overline{w}, a_1 + a_2 = \overline{a}\}$$

(b)
$$Q_2 = \{(a_k, w_k)_{k=1}^2 : w_1 = \overline{w}, a_1 = \overline{a}, a_2 = 0\}$$

(c)
$$Q_3 = \{(a_k, w_k)_{k=1}^2 : w_2 = \overline{w}, a_2 = \overline{a}, a_1 = 0\}.$$

As sample size *n* increases, how global min $L_s^{-1}(0)$ shrinks to Q^* ?

Illustration of Q^1, Q^2, Q^3

 Q_3

Geometry of global minima for final condensation

Typical convergence rate for final condensation

Gradient flows near Q^* **:** γ_1 : sublinear rate; γ_2, γ_3 : linear rate.

Stability of target branches underlies final condensation

Theorem 5.4 (recovery stability). Given $m_0 \leq r \leq m$, partition P and permutation π and separating inputs $\{x_i\}_{i=1}^n$. Then no point in $Q_{P,\pi}^r$ is recovery stable when $n \leq r + (r-l)d$ (l is the deficient number of P), and almost all points in $Q_{P,\pi}^r$ are recovery stable when $n \geq r + (m + m_0 - r)d$. Moreover, all points in Q^* are recovery stable when n > (d+1)m, namely, Q^* is recovery stable.

Sample size/Branches	Q^{m_0}	•••	Q^r		Q^m		
$\leq (d+1)m_0$	X	•••	X		X		
$\geq m + m_0 d$					\checkmark		
• • •				•••	•		
$\geq r + (m + m_0 - r)d$			\checkmark		\checkmark		
• • •			• •		•		
$\geq m_0 + md$	\checkmark	•••	\checkmark	•••	\checkmark		
> (d+1)m	\checkmark^*						
\checkmark^* : any point in Q^* is recovery stable							

Generalization advantage of condensation

1. Yaoyu Zhang, Zhongwang Zhang, Leyang Zhang, Zhiwei Bai, Tao Luo, Zhi-Qin John Xu, Linear Stability Hypothesis and Rank Stratification for Nonlinear Models. arXiv:2211.11623, (2022).

2. Yaoyu Zhang, Zhongwang Zhang, Leyang Zhang, Zhiwei Bai, Tao Luo, Zhi-Qin John Xu, Optimistic Estimate Uncovers the Potential of Nonlinear Models. arXiv:2307.08921, (2023).

3. Yaoyu Zhang, Leyang Zhang, Zhongwang Zhang and Zhiwei Bai, Local Linear Recovery Guarantee of Deep Neural Networks at Overparameterization. arXiv:2406.18035, (2024).

Generalization consequence of condensation

Large initialization (no condensation)

Small initialization (Strong condensation)

Condensation improves sample efficiency

How many samples are required to recover f^* by NN_{wide}?

Yaoyu Zhang, Leyang Zhang, Zhongwang Zhang and Zhiwei Bai,

Quantification of condensation--model rank

Model:

$$F: \mathbb{R}^M \to \mathcal{F} \subseteq \mathcal{C}(\mathbb{R}^d)$$

Model rank:

$$r_{\theta} \coloneqq \operatorname{rank} DF(\theta) = \dim \operatorname{Im}(DF(\theta))$$

= dim span $\left\{\partial_{\theta_i} F(\theta)(\cdot)\right\}_{i=1}^{M}$

Intuition: effective degrees of freedom at θ

$$F(\boldsymbol{\theta} + \boldsymbol{\delta})(\cdot) \approx F(\boldsymbol{\theta})(\cdot) + \sum_{i=1}^{M} \partial_{\theta_i} F(\boldsymbol{\theta})(\cdot) \delta_i$$

Yaoyu Zhang, Leyang Zhang, Zhongwang Zhang and Zhiwei Bai,

lower model rank signifies stronger condensation

Example:

$$F(\boldsymbol{\theta})(x) = a_1 \tanh(w_1 x) + a_2 \tanh(w_2 x)$$

Model rank:

dim span{tanh($w_1 x$), a_1 tanh'($w_1 x$)x, tanh($w_2 x$), a_2 tanh'($w_2 x$)x}

• **Condensed**($w_1 = \pm w_2$):

$$r_{\theta} \leq 2$$

 $r_{0} = 4$

• Not condensed($w_1 \neq \pm w_2 \neq 0, a_1 \neq 0, a_2 \neq 0$):

Yaoyu Zhang, Leyang Zhang, Zhongwang Zhang and Zhiwei Bai,

Model:

$$F:\mathbb{R}^M\to \boldsymbol{\mathcal{F}}\subset C(R^d)$$

Model rank:

$$r_{\boldsymbol{\theta}} = \dim \operatorname{span} \left\{ \partial_{\theta_i} F(\boldsymbol{\theta})(\cdot) \right\}_{i=1}^{M}$$

Optimistic sample size (
$$f^* \in \mathcal{F}$$
) :
 $O_{f^*} = \min_{\theta \in F^{-1}(f^*)} r_{\theta}$ $F^{-1}(f^*)$: Target set

Intuitive procedure:

Yaoyu Zhang, Leyang Zhang, Zhongwang Zhang and Zhiwei Bai,

Optimistic sample size reflects practice

Theorem 5 (optimistic sample sizes for two-layer tanh-NN). Given a two-layer NN $f_{\theta}(\boldsymbol{x}) = \sum_{i=1}^{m} a_i \tanh(\boldsymbol{w}_i^T \boldsymbol{x}), \boldsymbol{x} \in \mathbb{R}^d, \boldsymbol{\theta} = (a_i, \boldsymbol{w}_i)_{i=1}^m$, for any target function $f^* \in \mathcal{F}_k^{\text{NN}} \setminus \mathcal{F}_{k-1}^{\text{NN}}$ with $0 \leq k \leq m$, the optimistic sample size

Yaoyu Zhang*, Leyang Zhang, Zhongwang Zhang and Zhiwei Bai, Local Linear Recovery Guarantee of Deep Neural Networks at Overparameterization. arXiv:2406.18035, (2024).

Optimistic sample size reflects practice

Theorem 5 (optimistic sample sizes for two-layer tanh-NN). Given a two-layer NN $f_{\theta}(\boldsymbol{x}) = \sum_{i=1}^{m} a_i \tanh(\boldsymbol{w}_i^T \boldsymbol{x}), \boldsymbol{x} \in \mathbb{R}^d, \boldsymbol{\theta} = (a_i, \boldsymbol{w}_i)_{i=1}^m$, for any target function $f^* \in \mathcal{F}_k^{\text{NN}} \setminus \mathcal{F}_{k-1}^{\text{NN}}$ with $0 \leq k \leq m$, the optimistic sample size

Yaoyu Zhang*, Leyang Zhang, Zhongwang Zhang and Zhiwei Bai, Local Linear Recovery Guarantee of Deep Neural Networks at Overparameterization. arXiv:2406.18035, (2024).

wider network is sample efficient

Yaoyu Zhang*, Leyang Zhang, Zhongwang Zhang and Zhiwei Bai, Local Linear Recovery Guarantee of Deep Neural Networks at Overparameterization. arXiv:2406.18035, (2024).

Specialty of DNN models via optimistic estimate

Sample inefficient: Adding (unnecessary) connections worsens generalization

Sample efficient:

Increasing width doesn't harm generalization

Principle of model scaling

- Freely increase width
- Refrain from adding connection

vs. Scaling of brain

- mouse: $\sim 10^8$ neurons, $\sim 10^3 10^4$ connections/neuron
- human: $\sim 10^{11}$ neurons, $\sim 10^3 10^4$ connections/neuron

Condensation improves sample efficiency

Picture of sample size requirement for nonlinear models

Ways to facilitate condensation:

smaller initialization, dropout, larger weight decay, large learning rate

The origin of condensation

Permutation symmetry: e.g., $j, j' \in [m_{l-1}]$

$$f^{[l]}(x;\theta) = \sigma\left(\sum_{j=1}^{m_{l-1}} W^{[l-1]}_{,j} \sigma\left(W^{[l-2]}_{j}f^{[l-2]}(x;\theta) + b^{[l-2]}_{j}\right) + b^{[l-1]}\right)$$

Theorem(informal):

permutation-invariant manifolds are invariant manifolds of gradient flow. e.g., $\left(W_{j}^{[l-1]}, W_{j}^{[l-2]}, b_{j}^{[l-2]}\right) = \left(W_{j'}^{[l-1]}, W_{j'}^{[l-2]}, b_{j'}^{[l-2]}\right)$

Permutation symmetry → invariant manifolds (equiv to smaller network) → optimistically as efficient as smaller networks

permutation symmetry -> optimistic sample efficiency preserving

Permutation symmetric:

Embedding dim: d_{model} Attention mat dim: dHeads: h

$$A_{ heta}(X) = \sum_{i=1}^{h} \operatorname{softmax}_{\operatorname{row}} \left(rac{XW_{Q_i}W_{K_i}^{ op}X^{ op}}{\sqrt{d}}
ight) XW_{V_i}W_{O_i}^{ op}$$

KAN:

$$f_{ heta}(oldsymbol{x}) = f_{ heta}\left(x_1, \cdots, x_d
ight) = \sum_{i=1}^m \Phi_{oldsymbol{i}}\left(\sum_{j=1}^d \phi_{oldsymbol{i},j}\left(x_j
ight)
ight)$$

width: permutation symmetric

Increase *m* **preserves sample efficiency**

$$\Phi_i(x) ext{ or } \phi_{i,j}(x) = \sum_{i=1}^G c_i B_i(x), heta = \{c_i\} ext{ is learnable}$$

grid: no symmetry

Increase *G* **reduces sample efficiency**

Experiment

Our series works on condensation

A1. Regime of condensation—phase diagram series

1. Tao Luo, Zhi-Qin John Xu, Zheng Ma, Yaoyu Zhang, <u>"Phase Diagram for Two-layer ReLU Neural Networks at Infinite-Width Limit,"</u> Journal of Machine Learning Research (JMLR) 22(71):1-47, (2021).

2.Hanxu Zhou, Qixuan Zhou, Zhenyuan Jin, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu, <u>"Empirical Phase Diagram for Three-layer Neural Networks</u> with Infinite Width," NeurIPS 2022.

A2. Loss landscape structure—embedding principle series

1.Yaoyu Zhang, Zhongwang Zhang, Tao Luo, Zhi-Qin John Xu, <u>"Embedding Principle of Loss Landscape of Deep Neural Networks,"</u> NeurIPS 2021 spotlight.

2.Yaoyu Zhang, Yuqing Li, Zhongwang Zhang, Tao Luo, Zhi-Qin John Xu, <u>"Embedding Principle: a hierarchical structure of loss landscape of deep neural networks,"</u> Journal of Machine Learning, 1(1), pp. 60-113, 2022.

3.Hanxu Zhou, Qixuan Zhou, Tao Luo, Yaoyu Zhang, Zhi-Qin John Xu, <u>"Towards Understanding the Condensation of Neural Networks at Initial</u> Training," NeurIPS 2022.

4.Zhiwei Bai, Tao Luo, Zhi-Qin John Xu, Yaoyu Zhang, <u>"Embedding Principle in Depth for the Loss Landscape Analysis of Deep Neural Networks,</u>" CSIAM Trans. Appl. Math., 5 (2024), pp. 350-389.

A3. Generalization advantage—optimistic estimate series

1.Yaoyu Zhang, Zhongwang Zhang, Leyang Zhang, Zhiwei Bai, Tao Luo, Zhi-Qin John Xu, <u>"Linear Stability Hypothesis and Rank Stratification for</u> Nonlinear Models," arXiv:2211.11623 (2022).

2.Yaoyu Zhang, Zhongwang Zhang, Leyang Zhang, Zhiwei Bai, Tao Luo, Zhi-Qin John Xu, "Optimistic Estimate Uncovers the Potential of Nonlinear Models," arXiv:2307.08921 (2023).

3.Yaoyu Zhang, Leyang Zhang, Zhongwang Zhang, Zhiwei Bai, <u>"Local Linear Recovery Guarantee of Deep Neural Networks at</u> Overparameterization," arXiv:2406.18035 (2024).

Overview of our works on condensation

See more works on my personal website: https://yaoyuzhang1.github.io/

Thanks!